
FAST OPTIMIZATION ALGORITHMS FOR AUC
MAXIMIZATION

by

Michael Natole, Jr.

A Dissertation

Submitted to the University at Albany, State University of New York

in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

College of Arts & Sciences

Department of Mathematics and Statistics

2020

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

27835831

27835831

2020

Abstract

Stochastic optimizations algorithms like stochastic gradient descent (SGD) are favorable

for large-scale data analysis because they update the model sequentially and with low per-

iteration costs. Much of the existing work focuses on optimizing accuracy, however, it is

known that accuracy is not an appropriate measure for class imbalanced data. Area under the

ROC curve (AUC) is a standard metric that is used to measure classification performance for

such a situation. Therefore, developing stochastic learning algorithms that maximize AUC

in lieu of accuracy is of both theoretical and practical interest. However, AUC maximization

presents a challenge since the learning objective function is defined over a pair of instances of

opposite classes. Existing methods can overcome this issue and achieve online processing but

with higher space and time complexity. In this thesis, we will develop two novel stochastic

algorithms for AUC maximization. The first is an online method which is referred to as

SPAM. In comparison to the previous literature, the algorithm can be applied to non-smooth

penalty functions while achieving a convergence rate of O(log T/T). The second is a batch

learning method which is referred to as SPDAM. We establish a linear convergence rate

for a sufficiently large batch size. We demonstrate the effectiveness of such algorithms on

standard benchmark data sets as well as data sets for anomaly detection tasks.

ii

Acknowledgements

I would like to thank the following people for whom without their help and support, this

work would not have been possible.

First and foremost, I would like to thank my advisor Dr. Yiming Ying who first introduced

me to the field of machine learning. I am grateful for his continual support and patience

during my graduate studies and the course of my PhD.

I would also like to thank the faculty of the Mathematics & Statistics department. Specifi-

cally, I would like to thank Dr. Yunlong Feng, Dr. Karin Reinhold, and Dr. Boris Goldfarb

for being a part of my committee. Also, I would like to thank Joan Mainwaring, JoAnna

Aveyard, and Rosemary Bellanger.

I would also like to thank my parents, Michael and Paula, and my siblings, Michela, Amber,

and Antonio for their continued support during my graduate studies.

iii

Previous Publications

The material in chapter 4 appeared in [68] and the material in chapter 5 appeared in

[69]. See http://proceedings.mlr.press and https://www.frontiersin.org/legal/

copyright-statement, respectively, for permissions to publish. The work in both publi-

cations have been revised for this thesis and is being included since they were part of the

line of research. For both publications, I was the lead author for each work.

iv

Contents

Abstract . ii

Acknowledgements . iii

Previous Publications . iv

List of Tables . vi

List of Figures . viii

1. Introduction and Motivations . 1

1.1 Binary Classification . 2

1.2 The Case Against Accuracy and other Measures 8

1.3 ROC Curves and AUC . 12

1.4 Summary of Thesis . 19

2. Optimizing AUC and Related Work . 21

2.1 Advantages and Challenges of AUC for Measuring Performance 21

2.2 Related Work . 24

3. Regularized AUC Maximization . 44

3.1 Problem Formulation . 44

3.2 AUC Optimization as a Saddle Point Problem 45

3.3 Algorithm . 49

3.4 Convergence Analysis . 51

3.5 Experiments . 56

4. Stochastic Proximal AUC Maximization . 60

4.1 Proximal Methods and Algorithm Formulation 61

v

4.2 Convergence Analysis . 65

4.3 Experiments . 73

5. Stochastic Primal-Dual AUC Maximization . 76

5.1 Method Formulation . 76

5.2 Convergence Analysis . 79

5.3 Experiments . 84

6. Evaluation and Application . 87

6.1 Data Set Descriptions . 87

6.2 Implementation and Setup . 88

6.3 Results . 89

7. Conclusion . 95

7.1 Contributions . 95

7.2 Future Work . 96

vi

List of Tables

1.1 Various Loss Functions . 3

1.2 Various Regularizers . 4

1.3 The structure of a contingency table. 8

1.4 Example of a confusion matrix. 9

1.5 Scores and classifications of 10 instances. 17

2.1 A comparison of existing online algorithms for AUC maximization. Note that s
is the buffer size and t is the current iteration. 37

3.1 Basic information about the benchmark datasets. 57

3.2 Comparison of the testing AUC values (mean±std.) on the evaluated datasets. To

accelerate the experiments, the value for sector was determined after five runs instead

of 25 for the other data sets. The performances of OPAUC, OAMseq, OAMgra, online

Uni-Exp, B-SVM-OR and B-LS-SVM were taken from [34]. 58

4.1 Basic information about the datasets. 73

4.2 Comparison of the testing AUC values (mean±std.). To accelerate the experi-
ments, the values for OPAUC, OAMseq, OAMgra, and B-LS-SVM were taken
from [34]. 74

5.1 Basic information about the datasets. 84

5.2 Comparison of the testing AUC values (mean±std.) on the evaluated datasets. To

accelerate the experiments, the value for sector was determined after five runs instead

of 25 for the other data sets. The results of OPAUC, OAMseq, OAMgra, online

Uni-Exp, B-SVM-OR and B-LS-SVM were taken from [34] as in Chapters 3 and 4. . 86

6.1 Summary of standard benchmark datasets used in the experiments. 88

6.2 Summary of datasets used for anomaly detection. The statistic p represents the oc-

currence of the minority class. 89

vii

6.3 Comparison of the testing AUC values (mean±std.) on the evaluated benchmark

datasets. 89

6.4 Comparison of the testing AUC values (mean±std.) on anomaly detection datasets. 93

viii

List of Figures

1.1 Various convex loss functions against 0− 1 loss. 4

1.2 A graphical explanation of SVM . 5

1.3 Example of a lift chart. 11

1.4 Example of an ROC curve. 13

3.1 AUC vs. Time curves of regSOLAM against other state of the art learning algorithms. 59

4.1 Interpretation of a proximal operator at selected points. 62

4.2 Comparison of SPAM vs. regSOLAM for AUC vs. iteration count. 75

5.1 AUC vs. Iteration curves of SPDAM algorithm for various batch sizes. The
batch size is a percentage of the number of samples. 84

5.2 Comparison of SPDAM vs. regSOLAM for AUC vs. iteration count. For
SPDAM, 10% of the data was chosen for a batch size. 85

6.1 Comparison of regSOLAM, SPAM, and SPDAM for various parameter values. 90

6.2 Comparison of regSOLAM against SPAM and SPDAM for AUC vs. # of iter-
ations on benchmark datasets. 91

6.3 Comparison of regSOLAM against SPAM and SPDAM for AUC vs. time (sec-
onds) on benchmark datasets. The points on the plot of SPDAM represents the
first and second iterations of the algorithm. 92

6.4 Comparison of regSOLAM against SPAM and SPDAM for AUC vs. # of iter-
ations for anomaly detection tasks. 94

ix

Chapter 1

Introduction and Motivations

Machine learning is an ever growing blend of mathematics and computer science to analyze

data, identify patterns, and to make accurate predictions. Over the past few years, prediction

algorithms have been applied to several application domains including computer vision [60],

web search, natural language processing [8], and many others. This has resulted in technology

(i.e. phones, cars, etc.) benefiting tremendously from learning algorithms. Voice assistants

are now ubiquitous and cars are now learning to drive themselves.

A driving force behind such innovations has been big data. Since storage systems have

become cheap and ubiquitous, it is now easy to store huge amounts of information that was

not possible before. This has attracted the attention of numerous industries because they

are intrigued by its potential. Businesses could use this information to make well-informed

decisions to lower costs and increase sales. Even more so, the impact of big data goes

beyond business. Political candidates use data to make better campaign decisions to try to

gain more votes and determine who is the leading candidate. Companies, such as Facebook

and Twitter, collect large amounts of information so that they can specifically target the

most realistic voter. An important question to consider then is how is this done? How is

a person labeled or categorized? Machine learning has become more and more crucial with

the size of available data. Existing methods are not able to scale efficiently, and therefore

new methods are of critical importance.

At the highest level, machine learning can be classified as either unsupervised or super-

vised learning. In unsupervised learning, the learner is given unlabeled training data, and

the goal is to draw conclusions on future data. For example, given a number of social media

posts, you might want to create an unsupervised learning algorithm that groups the posts

into various topics. This task is an example known as clustering. Dimensionality reduction is

also another example of unsupervised learning. In this problem, the data has a large number

of features. It is then desirable to reduce the number of features to find a lower-dimensional

1

representation that maintains the properties of the original data. In supervised learning, the

learner is given labeled training data with the intention to make predictions on future data

points. For example, given the characteristics of a house, you would want to predict the sale

price. This is an example of regression. Classification and ranking are also other examples

of supervised learning. For classification, a category is assigned to an item while ranking

is when items are to be ordered. Typically, ranking is based on a score based system, but

preference-based settings are also used. Ranking is preferred over classification because a

user will usually only examine the top ten or so documents. For example, a fraud detection

officer can not investigate all suspected cases, but rather will consider the ones with the

highest degree of certainty. In most scenarios, however, datasets are only assigned a label

with no information on how they are ordered.

Throughout this thesis, we will focus on the supervised learning problem of classifi-

cation. This problem type is very popular among the machine learning community and is

ubiquitous in our daily lives. For example, email is a popular method of communication,

but not every email is legitimate. Our email systems categorize email as either spam or not

spam. In other aspects of our lives, we are influenced by meaningful classification algorithms.

Popular companies such as Netflix and Amazon rely heavily on having deep recommendation

systems for their users. Netflix wants to present content that a user will watch based upon

past viewing history while Amazon recommends products based upon previous purchases.

Therefore, it is of critical importance to determine the effectiveness of these methods. In

this thesis, we will focus on designing algorithms that are both effective and efficient in the

problem of binary classification.

1.1 Binary Classification

In supervised learning, the goal is to learn a function f : X → Y , where X is the input

space that is typically a domain in Rd (d is the number of features), and Y is the output

space. In classification, the features of an object are used to determine a label in the output

space. We will restrict this work to the binary case. Specifically, we will consider data

{(xt, yt)}Tt=1 where xt ∈ X and yt ∈ {−1, 1}. Let zt denote the pairing (xt, yt). Throughout

this thesis, we will let f(x) = sign(wTx), where w ∈ Rd is the parameter to be learned.

For binary classification, and machine learning in general, it is common to solve the

2

Name Loss Function `(f(x), y)
Hinge [3] max(0, 1− yf(x))
Squared Hinge [44] 1

2
max(0, 1− yf(x))2

Exponential [19] exp(−yf(x))
Logistic [12] log(1 + exp(−yf(x)))
Least Squares [107] 1

2
(f(x)− y)2

Least Absolute Deviation |f(x)− y|
Quantile Regression [47] max(τ(f(x)− y), (1− τ)(y − f(x)))
ε-Insensitive [104] max(0, |f(x)− y| − ε)
Huber’s Robust Loss [66] 1

2
(f(x)− y)2 if |f(x)− y| ≤ 1, else |f(x)− y| − 1

1

Poisson Regression [16] exp(f(x))− yf(x)

Table 1.1: Various Loss Functions

following empirical risk minimization (ERM) problem:

min
w

J(w) = Remp(w) + Ω(w), (1.1)

where Remp(w) defines the empirical error and Ω(w) is the regularizer. The empirical error

is the average loss incurred by some loss function ` after T observations:

Remp(w) =
1

T

T∑
t=1

`(zt,w).

Typically, an indicator function is used for detecting when a misclassification made by a

model has occured, i.e. `(zt,w) = 1[ytwTxt<0]. This results in the following problem to be

solved:

min
w

1

T

T∑
t=1

`(zt,w) + Ω(w). (1.2)

A common procedure in machine learning is to replace the indicator function by a convex

surrogate loss function. There are many different common loss functions used in machine

learning with each being used for a different application area. For example, least absolute

deviation is used with image restoration [117]. A few of them are shown graphically in Figure

1.1 and many others are summarized in Table 1.1.

The second important consideration to make is the selection of a regularizer for the

Ω(w) term. Regularization is used to avoid overfitting of the data. The most popular choice

is the L2 regularization, i.e., Ω(w) = 1
2
‖w‖2

2. However, many other choices exist, such as

3

Figure 1.1: Various convex loss functions against 0− 1 loss.

elastic net, i.e. Ω(w) = 1
2
‖w‖2

2 + ‖w‖1. For example, letting Ω(w) = ‖w‖1 penalizes the

empirical loss for adding large weights to w. This leads to Lasso-type estimation algorithms

[63]. A summary of common regularizers is given in Table 1.2.

By selecting various loss functions and regularizers, we have standard methods that

can be used to solve a given machine learning problem. For example, the simplest method

is the use of support vector machines (SVM). The empirical risk RSVM minimized by SVM

is the average of the hinge loss:

RSVM =
1

T

T∑
t=1

max(0, 1− ytwTxt). (1.3)

This method, originally developed by [103], is based on the idea of finding a hyperplane that

separates the data such the distance between the hyperplane and the nearest data point is

maximized. This is shown graphically in Figure 1.2.

Regularizer Ω(w)
L2

1
2
‖w‖2

2

L1 ‖w‖1

Elastic Net 1
2
‖w‖2

2 + ‖w‖1

Table 1.2: Various Regularizers

4

Figure 1.2: A graphical explanation of SVM

From the formulation in (1.1), we can also recover different standard problems by

selecting various loss functions. Another popular choice is to use the logistic loss function

with the L2 regularizer, called logistic regression. This type of model is widely used in

the medical community to predict mortality in injured patients. However, the focus of this

thesis is on classification, and we will be using the least square loss function as well as various

regularizers.

Finding the minimizer of J(w) has two different approaches. The first way to obtain

the solution w∗ of problem (1.1) is by way of batch learning methods. These methods

require storing of the data and learn by using either all available samples or a subset of the

available samples. An important consideration for which algorithm is applicable is whether

or not the objective function is smooth. In the case that J(w) is not differentiable, two

popular approaches are cutting plane methods (CPM) [45] and bundle methods [101]. CPM

uses a generalization of gradients appropriate for convex functions, the subgradient. This

includes for functions which are not necessarily smooth. By the definition of a subgradient,

we can bound J(w) from below by its first-order Taylor expansion. This lower bound forms

the basis for cutting plane methods. Although CPMs can converge to the minimum, this

5

method is often very slow when iterates are too far away from previous ones (i.e. CPMs can

have an unstable “zig-zag” behavior in the iterates). To stabilize CPMs, bundle methods

have been proposed by introducing a proximity control function. This prevents overly large

steps in the iterates [46]. There are 3 popular types of bundle methods: proximal [46],

trust region [90], and level set [52]. These three variants each choose the L2 norm, however,

they all differ in how they compute the new iterate. SVMperf has been shown to converge

with a rate of O(1/
√
T) and has several advantages. Using a modified version of the primal

SVM formulation, the algorithm has a very easy implementation and a meaningful stopping

criterion that avoids wasted time on solving the given problem [42].

Now when J(w) is twice differentiable and convex, w∗ is optimal when ∇J(w∗) = 0

(and when X = Rd). In this situation there are numerous available methods for solving

this type of problem. The most famous of all methods is Newton’s method. Other stan-

dard techniques that can be applied are quasi-Newton methods. Unlike Newton’s method,

quasi-Newton methods can be used if computing the Jacobian or Hessian is too difficult

or expensive for each iteration. These methods are generally used to find zeroes or local

maxima and minima of functions. The most popular of which is the BFGS algorithm [108].

The method only requires that the gradient of the objective function needs to be available

at each iterate. More importantly, since second derivatives are not required, quasi-Newton

methods can be more efficient than Newton’s method. Other state-of-the-art batch learning

algorithms include OCAS [31] and LIBLINEAR [26]. OCAS, again based on cutting plane

methods, has been shown to outperform SVMperf while maintaining the same precision as

the support vector solution. LIBLINEAR is an open source library for solving linear classi-

fication problems on a large scale. The package includes support for logistic regression and

linear SVM. For the case of hinge loss, the package uses a coordinate descent method to solve

for the optimal parameter [40]. More recently, NESVM [119], based on Nesterov’s method

[71] has a convergence rate of O(1/T 2). The algorithm smoothes the non-differentiable parts

of the objective function, i.e., hinge loss and the `1-norm, and then uses gradient methods

to solve the smoothed optimization.

Overall, batch algorithms have some very lucrative advantages but some disadvantages

as well. Since either a subset or the entire data set is required, they are able to completely

optimize the cost function for a set of training samples. This makes them very accurate.

6

However, such algorithms cannot evaluate as many samples because it must iterate several

times over the training set to obtain the optimum [5]. Because many samples are considered

at the same time, the computational complexity of these algorithms can be high. Even more

so, if the data is of high dimension, that will only add to the complexity of the algorithm.

In some cases, this could make the algorithm useless. Also, since these algorithms require

access to most of the data, it also needs to be stored on the system and then loaded into

memory [54].

The other approach to finding the minimizer is by using online learning algorithms.

In the online setting, each instance of data is used to update the model iteratively. The

efficiency and scalability of online learning makes the topic desirable for sequential data

and of interest to the machine learning community since the data is not required to be

stored. The most well known method for online learning is the Perceptron Algorithm [87].

The main idea behind predicting a sample xt is to use a weight vector, and determine if

wt · xt > 0 for a positive sample; otherwise it would be classified as a negative sample.

More recent work includes the first-order Passive-Aggressive Algorithm (PA) [14]. The PA

algorithm introduces the maximum margin principle for classification. The idea is similar to

the Perceptron Algorithm with the idea that we desire sign(wt · xt) = yt. The method can

be interpreted as a projection onto the half-space of vectors that gives a hinge-loss of zero.

Therefore, the algorithm is passive when there is no change between iterations. However,

when the hinge-loss is positive, the algorithm then forces the new solution to satisfy the hinge-

loss constraint. This step has a closed form solution by using Lagrangian multipliers and is

considered aggressive because there are no restrictions on the necessary step size. Hence, the

algorithm is called the Passive-Aggressive Algorithm. However, a major problem of the PA

algorithm is it fails to control the direction and scale of the parameter updates. Pegasos [92],

a state-of-the-art algorithm, is a first order online method that introduces a chosen step size

for each iteration. The computational cost of the algorithm can be dramatically reduced if

the feature space is sparse, however, if the space is dense, such as in computer vision tasks,

it will hardly outperform other algorithms such as SVMperf [41].

To address these issues, some second-order online learning algorithms have been in-

troduced and apply parameter confidence to improve the online learning performance. The

first of which is the Adaptive Regularization of Weights (AROW) algorithm which uses con-

7

Actual Positive Actual Negative
Predicted Positive TP FP
Predicted Negative FN TN

Table 1.3: The structure of a contingency table.

fidence weighted (CW) learning [22]. The method gives confidence in a linear classifier by

maintaining a Gaussian distribution over the weights with mean µ ∈ Rd and covariance

matrix Σ ∈ Rd×d. The classifier is then trained by the passive-aggressive rule [14]. Further

work has been done in this direction [15, 73].

The main draw of online algorithms is that they work by drawing a fresh random

sample and adjust the parameters based on this new single sample only with very few

statistical assumptions. In contrast to batch learning algorithms, this makes online learning

algorithms very lucrative for when handling streaming data. Additionally, if new data arrives

quickly, a large number of samples can be processed quickly because of the simple and low

computational cost of the algorithms. On the other hand, however, because of the use of a

single sample for updates, the cost function is usually not fully optimized. Online algorithms

may seem hopelessly slow, however, it has been shown that they can converge just as fast as

batch algorithms [5].

1.2 The Case Against Accuracy and other Measures

A crucial consideration of any algorithm is to measure its performance on predicting

future data. So how does one measure the performance of a classifier? For binary classifica-

tion, the decisions made by a classifier can have four possible outcomes. If the instance is

positive and labeled as positive, then it is a true positive (TP); if it is labeled as negative,

then it is a false positive (FP). If the instance is negative and is classified as negative, then

it is a true negative (TN); if it is labeled positive, then it is a false negative (FN). These

four possible decisions made by a classifier can be made into a structure called a confusion

matrix, denoted by C. A confusion matrix, or as it is sometimes called a contingency table,

is pictured in Table 1.3.

It is important to note that correct decisions made by the classifier are recorded along

the major diagonal. Likewise, incorrect decisions are recorded along the minor diagonal.

8

Actual Positive Actual Negative
Predicted Positive 1 11
Predicted Negative 9 979

Table 1.4: Example of a confusion matrix.

Two important measures that can be calculated from the confusion matrix are the true

positive rate (also called the hit rate or recall) and the false positive rate (also called the

false alarm rate). To determine these values, let P denote the number of samples that are

of the positive class and let N denote the number of samples that are of the negative class.

These measures can then be calculated below:

TPR =
TP

P
,FPR =

FP

P
. (1.4)

Using the confusion matrix as given above, there are many different types of measures

that can be constructed from it, the most natural of course is accuracy (or misclassification

error). Accuracy is then defined in terms of the confusion matrix as:

Accuracy =
TP + TN

P +N
. (1.5)

Many different areas are interested in optimizing accuracy, however, an important question

would be to consider is accuracy a robust metric for measuring perforamnce? It is has been

determined that classification accuracy is a poor performance metric [80, 81]. An important

distinction should be made, in that the statistical tests that are used are not to be questioned

[20, 89], but it is important to question whether accuracy is an appropriate measure. As a

motivating example, consider the confusion matrix given in Table 1.4. The classifier above

has 98% accuracy, however, it was only able to successfully predict the majority class.

To precisely explain why this measurement is poor, consider two different accuracy

measures: the accuracy of correctly identifying an input (correct acceptance) and the ac-

curacy of correctly identifying an input as a nonmember of the class (correct rejection).

Between these two individual accuracies, the classifier described in the previous example

does not sufficiently predict the samples [65]. This reveals an underlying issue with accuracy

in that it assumes the class distribution is known for the target [81]. In many cases for

9

benchmark data sets, we often do not know whether the existing distribution is the natural

distribution. For example, the splice junction data set has 50% donor sites, 25% acceptor

sites, and 25% nonboundary sites, however, no more than 6% of DNA actually codes for hu-

man genes [88]. An argument by some researchers is that large class skews and large changes

in distribution may be seen as unrealistic. However, in many real world domains, such as

fraud detection [27], vision [62], medicine [60], and language [8], class skews of 101 and 102

are very common. Distributions with skews up to 106 have been observed [9, 28, 49, 88, 53].

Changes in distribution are also not uncommon and occur in many different application do-

mains. For example, epidemics will cause medical decision making to change as the number

of cases of the disease increases over time. Fraud detection is another such example as well.

Proportions of fraud can very from month to month and between different locations [27].

Lastly, a change in a manufacturing procedure could drastically change the number of defec-

tive units that are produced. In each of the cases, the prevalence of a particular class may

change without any changes or alterations to the characteristics of a class. In these cases,

predicting the minority class is the primary objective and this critical issue makes accuracy

useless for model comparison for real world examples.

Another problematic assumption of accuracy is that it assumes the misclassification

costs are equal [81]. This assumption does not translate well into real-world scenarios.

There are many examples in medical diagnosis, decision theory, and pattern recognition

where there is huge cost difference between positive and negative classes. For example, the

cost of missing a case of fraud is very different from the cost of a false alarm [27]. From

these issues, using accuracy to measure the performance of an algorithm is not a robust

method. However, much of the existing methods focus on optimizing the classification error

[5, 97, 64, 112]. Therefore, it is of the utmost importance to design algorithms that optimize

another performance measure that is more robust than accuracy.

Prevailing over the shortcomings of accuracy when class distributions are unbalanced

and the misclassification costs are unequal is best done by using a more appropriate per-

formance measure [61]. Just as we derived accuracy from the confusion matrix, different

measures can also be derived. Many of these are reserved for specific problems. In the

area of pattern recognition and information retrieval, precision and recall is a performance

10

Figure 1.3: Example of a lift chart.

measure that is commonly used. We have that precision and recall are defined as:

Prec(C) =
TP

TP + FP
and Rec(C) =

TP

P
, (1.6)

where the values above are from the confusion matrix, C. Precision is defined as the fraction

of relevant instances among the retrieved instances while recall is the fraction of relevant

instances that have been retrieved over the total amount of relevant instances. This method

is popular to use for web search engines since the user typically only scans the first few

results that are presented. A second type of measurement from this is called the precision

- recall breakeven point (PRBEP). This requires that a classifier make a decision such that

the precision and recall are equal. This gives that at any time, the following must hold:

TP + FN = FP + TN. (1.7)

A problem with precision-recall is that it requires optimizing two values, instead of a single

number. A way to combine the precision and recall into a single measurement is to use a

weighted harmonic average between the two, called the Fβ-Score. It is defined by:

Fβ(C) =
(1 + β2)TP

(1 + β2)TP + FP + FN
. (1.8)

The typical value of β is usually 1. This measure is used to evaluate binary classifiers for

natural language applications such as text classification.

Visualization tools are also very popular and beneficial to gain insight into the perfor-

11

mance of a classifier. A lift chart is a well known visualization tool in data mining for binary

classifiers in marketing and sales applications [4]. Lift is a measure of the performance of a

model at predicting samples that will result in a response, with respect to the population as

a whole, measured against a model that selects randomly. For example, consider a marketing

company that wants to plan a strategy to advertise to households with specific attributes.

Even though the ad has a small cost, the company wishes to advertise to consumers that

have the highest chance of purchasing the product. Therefore, it is of great interest to de-

sign a classifier to determine whether or not a household is a potential customer or not. To

examine the relationship between advertisement cost and customer acquisition, a lift chart

is used to evaluate the performance of such a classifier. A critical assumption that is made

is that the number of customers, P , is generally unknown and therefore the true positive

rate cannot be calculated. A lift chart consists of the expression of the positive response

rate on the vertical axis while the horizontal would be the percent of customers contacted

with each point in the lift chart represents a binary classifier. By varying the threshold of a

probabilistic classifier, we obtain a set of classifiers, and therefore a set of points. The curve

given by this collection of points gives a lift chart [111, 106]. The area under a lift chart has

a well defined statistical definition given by:

Alift = P · E[IwT (x−x′)≥0|y = 1], (1.9)

where P is the number of positive samples. Equation (1.9) represents the probability of a

random positive sample ranking higher than a random sample (either positive or negative).

The optimal value for the area under the lift chart is given by P .

1.3 ROC Curves and AUC

In this section, we will introduce the Receiver Operating Characteristic (ROC) curve

and the area under the ROC curve (AUC) [38]. This visualization tool and metric is consid-

ered by many as a robust method for model comparison. To obtain a better understanding

of ROC analysis, we first use the following motivating example. In the area of marketing, ad-

vertisers wish to only promote their ad to customers who are most likely to buy the product

or service. If accuracy was used, we would only be able to classify customers either as buyers

or non-buyers, however, it is common practice to use different market strategies to customers

12

Figure 1.4: Example of an ROC curve.

with different probabilities of buying the product. It would be best to then have a ranking of

customers in terms of their buying potential. Therefore, solving a ranking problem is more

desirable than just a classification problem [57]. An important consideration follows from

this. It is assumed that to that develop a better classifier, the true ranking of the training

samples would be needed to be known, however, in practice this information is almost always

unknown with only the training and testing labels are given [11]. So this naturally leads

to the question: are there better methods than accuracy to evaluate the performance of a

classifier that also produces rankings? The answer to this is, of course, the area under the

ROC curve (AUC).

The ROC curve was originally developed in signal detection theory in connection with

radio signals during WWII by engineers for detecting enemy objects in battlefields [25]. Since

then, they have been used prominently in signal detection theory to measure the concessions

between hit rates and false alarm rates of classifiers [25, 99]. Their use was then introduced

into psychology to account for perceptual detection of stimuli, and then was further expanded

into radiology, medicine, biometrics, forecasting natural hazards, meteorology, model per-

formance assessment, and other areas [76, 67, 77, 122]. The work in [98] enlarged ROC

analysis for use in visualizing and analyzing the behavior of diagnostic systems. Recently,

ROC analysis has been introduced into machine learning and data mining research. The

earliest use of ROC graphs in machine learning was by [96] who showed the robustness of

evaluating and comparing algorithms using ROC curves since classification accuracy is often

a poor metric for measuring performance [81]. The use of ROC analysis has only continued

13

Algorithm 1 Conceptual Method for Calculating an ROC Curve

Input: L - list of test examples, f - the probabilistic classifier’s estimate that instance i
is positive, min and max - the smallest and largest values returned by f , increment - the
smallest difference between any two f values
for t = min to max by increment do
FP ← 0
TP ← 0
for i ∈ L do

if f(i) ≥ t then
if i is a postive sample then
TP ← TP + 1

else
FP ← FP + 1

end if
end if

end for
Add point (FP

N
, TP
P

) to ROC curve
end for

to expand in the machine learning community because ROC graphs have properties that

make them desirable for datasets with unequal class distributions and cost-sensitive learn-

ing. ROC curves also have the added benefit by using the area under the ROC curve (AUC)

as a performance metric for comparison.

The definition of an ROC curve is based on values from a confusion matrix. Recall that

the true positive rate (also called the hit rate) of a classifier is TP/P . The false positive rate

(also called the false alarm rate) is FN/N . ROC graphs are then two-dimensional graphs

with the true positive rate on the y-axis and the false positive rate on the x-axis using

changing thresholds. For a given discrete classifier, such as a decision tree, each decision by

the classifier outputs a (fp rate, tp rate) pair for a point on the ROC curve. Once a classifier

has made decisions for a particular dataset, this leads to only a single confusion matrix and

thus only to a single point in ROC space. Some classifiers, such as a Naive Bayes classifier,

produces a prediction based upon a numeric value, or probability, that an instance belongs

to a particular class. For a higher probability, the greater the chance that the example will

belong to a particular class. So on a very basic level, by varying a particular threshold (say

from −∞ to ∞), we can obtain a curve through ROC space. This procedure is not very

precise nor computationally efficient, but explains the main observations of how an ROC

curve is constructed.

14

Algorithm 2 Practical Method for Calculating an ROC Curve from Test Set

Input: L - list of test examples, f - scoring function (probability that an example is
positive), P - number of positive sample, N - number of negative samples
Output: R - list of ROC points
Lsorted ← L sorted by decreasing f scores
FP ← TP ← 0
R← {}
fprev ← −∞
i← 1
while i ≤ |Lsorted| do
f(i) 6= fprev then
Push (FP

N
, TP
P

) onto R
fprev ← f(i)
end if
if Lsorted[i] is a positive example then
TP ← TP + 1
else
FP ← FP + 1
end if
i← i+ 1
end while
Push (FP

N
, TP
P

) onto R (i.e. (1, 1))
end while

An efficient approach to ROC construction begins with a scoring function f(i) that

assigns a probability to a particular instance, i. This allows the samples to be ordered

with respect to the assigned probability. By assigning a particular threshold, we can then

easily classify the given instances. A property that is of great interest from this is the

monotonicity of thresholds, i.e., if an instance is classified as positive, then it will remain

classified as positive for any lower threshold. So for a fixed threshold, we can order the

samples by decreasing f scores, then one can move down the list to update the true positive

and false positive rates. In this manner, an ROC curve can be created by a linear scan. The

conceptual method is summarized in Algorithm 1. The practical method is summarized in

Algorithm 2 that maintains a stack of ROC points. A new point is pushed onto the stack after

each point is processed. The algorithm has the typical complexity of O(n log n) for sorting

and then O(n) for the linear scan for a complexity of O(n log n). An important consideration

to note for Algorithm 2 is that any point with the same f score as a previous sample will be

omitted since we are only looking for the expected performance of the classifier.

15

The analysis of a constructed ROC curve has several areas of interest. The point (0, 0)

represents a classifier that never makes a classification where as the point (1, 1) represents

unconditionally making decisions. The upper left corner, i.e. the point (0, 1), represents a

perfect classifier with a false positive rate of 0. More generally, a point in the ROC space

is better than another where the true positive rate is greater or the false positive rate is

lower. A point in the left hand side of the ROC curve near the x-axis describes a classifier

as being conservative. In other words, a classification is determined to be positive only if

there is strong evidence that this will make a small error. Similarly, the upper right region of

the ROC graph describes classifiers as liberal since positive classifications will be made with

weak supporting evidence. From these descriptions, it is clear that liberal classifiers tend to

have a high false positive rate while conservative classifiers have low true positive rates. The

left hand-side of the ROC graph is of great importance since many application domains have

a large number of negative instances while only a few positive instances. Additionally, the

line y = x represents the strategy of randomly guessing. For example, if half the samples are

classified as positive half the time, then it is expected that only half the classifications will be

correct for both the positive and negative classes. This is represented by the point (0.5, 0.5).

Any classifier that is in the lower right triangle, i.e. below the diagonal, is considered worse

than random guess. However, if the classifier is negated, then it will produce a classifier in

the desired upper left of the ROC space.

The widespread adoption of ROC curves for measuring classifier performance in many

application areas can be attributed to the many benefits that they offer. First and foremost,

plotting ROC curves on the same graph allow for a comparison between classifiers. For

simplicity, consider two classifiers A and B. If classifier A lies entirely above classifier B,

then A is said to dominate B. In other words, the classifier that lies above the others is

considered the most robust classifier [78, 79]. However, an issue that could arise is that

classifier A may not entirely dominate classifier B. To better determine which classifier is

better, we desire a single scalar value, like accuracy, to represent the expected performance.

A common method is to calculate the area under the ROC curve, denoted as AUC [7, 38].

Since AUC comes from the ROC curve, which is defined in the unit square, values are from

0 to 1, however, since the random guess line has an area of 0.5, no classifier should have an

AUC score less than 0.5.

16

Analysis of ROC curves necessitates some basic considerations. First and foremost, the

distributions for both the positive and negative classes are assumed to be normal (called the

binormal assumption). Under this assumption, the decision threshold can be set anywhere,

but it is commonly selected to minimize the Bayes error rate. However, if the error costs

are unequal and known, then the decision threshold can be selected to minimize the overall

cost of the errors. Also, it is important to note that the correspondence between the prior

probability of a class and its error cost. If the class distribution of examples is consistent

with the cost of errors, then it is straightforward to build a classifier coherent with those

errors. However, if the data set is skewed in respect to the true cost of the errors, it may be

difficult to build a classifier that is coherent with those errors. This remains true even if we

know the cost of the errors in advance. Finally, we usually have very little evidence about

the relationship between the class distribution and the class error. For example, consider the

issue of predicting if a patient has cancer. It is obvious that the difference in cost is quite

significant, but we don’t have a way of conducting a cost analysis. In a situation like this,

the decision threshold is varied to maximize the cost on the negative class rather than the

positive class.

Inst. # Class (True) Class (Hyp) Score
1 P Y 0.999
2 P Y 0.999
3 P Y 0.992
4 P Y 0.988
5 N Y 0.974
6 N Y 0.955
7 N N 0.682
8 N N 0.531
9 N N 0.480
10 N N 0.441

Table 1.5: Scores and classifications of 10 instances.

Even with careful considerations, ROC curves do have disadvantages. A particular

point on a ROC graph measures relative sample scores meaning that the results only need

to be able to differentiate between positive and negative samples. These results, however,

are not required to be accurate. To better illustrate this point, it is best to consider an

example. As from Table 1.5, the classifier used mislabeled examples 5 and 6, resulting in an

80% accuracy. However, the ROC curve illustrates a perfect classifier because it was able

17

to rank the positive samples over the negative samples. This discrepancy is because each

metric is measuring something different. Accuracy is measuring the determined classification

with respect to a given threshold (score > 0.5). If the values are probabilities, the accuracy

would not be appropriate, but in this example they are not. This example shows when scores

are not properly calibrated and there are methods to overcome this issue. Lastly, relative

scoring presents an issue because they generally cannot be compared across model classes.

For example, one model could produce scores between 0 and 1 while another might produce

scores in the interval of [1, 100]. Thus, comparing model performance using a common

threshold would not be possible.

Even with the existing issues and assumptions of ROC curves, they have a very at-

tractive quality: they are not sensitive to changes in class distributions. If the proportion of

positive to negative samples changes, or the number of negative instances greatly outnumbers

the positive instances, ROC graphs are not affected by this. To understand why this is the

case, recall the confusion matrix as defined in Table 1.3. The proportion of positive instances

to negatives instances is based on information from both the left column (positive class) and

the right column (negative class). If a metric uses information from both columns, then it

will be sensitive to changes in class skew. Metrics such as accuracy, precision, recall, lift,

and the Fβ-score all use values from both columns and will be impressionable to changes in

the class distribution even if the classifier performance does not. ROC graphs, on the other

hand, are based on the true positive rate and false positive rate. Both of these measures are

restricted to a single column calculation.

Finally, since AUC is derived from an ROC curve, then it is also insensitive to changes

in class distributions. Even more so, AUC is of interest to researchers because it has a

meaningful statistical property: the AUC score is equivalent to the probability that the

classifier will rank a randomly chosen positive sample higher than a randomly chosen negative

sample. Specifically, we can define AUC as follows:

Definition 1.1. For a linear scoring function f(x) = wTx, AUC is

AUC(w) = Pr(wTx ≥ wTx′|y = 1, y′ = −1)

= 1− E[I[wT (x−x′)<0]|y = 1, y′ = −1]

18

Algorithm 3 Calculating the area under an ROC curve

Input: L - list of test examples, f - scoring function (probability that an example is
positive), P - number of positive sample, N - number of negative samples
Output: A - the area under the ROC curve
Require: P > 0 and N > 0
Lsorted ← L sorted by decreasing f scores
FP ← TP ← 0
FPprev ← TPprev ← 0
A← 0
fprev ← −∞
i← 1
while i ≤ |Lsorted| do

if f(i) 6= fprev then
A← A+ TrapezoidArea(FP, FPprev, TP, TPprev)
fprev ← f(i)
TPprev ← TP
FPprev ← FP

end if
if i is a postive sample then
TP ← TP + 1

else
FP ← FP + 1

end if
i← i+ 1

end while
A← A+ +TrapezoidArea(N,FPprev, P, TPprev)
A← A/(P ×N) /* Scale from P ×N onto the unit square */

where (x, y), (x′, y′) ∈ Z = X × Y are independent.

This definition is equivalent to the Wilcoxon Test of Ranks [38]. In areas where ROC analysis

is used, the AUC is also examined for precise model comparison. Computing the AUC score

can be easily done by using trapezoids under the graph [7]. The method is summarized in

Algorithm 3.

1.4 Summary of Thesis

In this thesis, we focus on the task of binary classification for AUC optimization and

briefly describe the main contributions of this work below. In the next chapter, we explain

the advantages and challenges of training algorithms to maximize the AUC score and review

19

the related work. In chapter 3, we formulate a modified version of the algorithm previously

published in [113] that includes the use of a regularization term to be used as a benchmark for

comparison. In chapter 4, we propose the online learning algorithm called Stochastic Proxi-

mal AUC Maximization (SPAM) with a theoretical analysis of its convergence of O(log T/T).

We also then demonstrate its effectiveness on standard benchmark data sets. In chapter 5,

we propose the batch learning algorithm called Stochastic Primal-Dual AUC Maximization

(SPDAM) that achieves a linear convergence rate. We confirm our results by demonstrating

the algorithm on standard benchmark data sets. In chapter 6, using the methods discussed

in chapters 3, 4, and 5, we test the algorithms on real world data sets for anomaly detection.

Finally, the last chapter concludes with a summary of this thesis as well as some possible

directions for future work.

20

Chapter 2

Optimizing AUC and Related Work

Recently, there has been increased interest in developing optimization algorithms for AUC

maximization. Since the performance metric is used in so many different fields [89], it is

natural to desire to develop algorithms that optimize AUC over accuracy. Progress has been

made in both batch and online algorithms, however, the various approaches have severe

limitations that hinders their usage in regards to high dimensional data as well as processing

streaming data.

In the first section, we will review the advantages and challenges for using AUC to

measure classifier performance. In the second section, we will review the related work. We

will consider both batch and online algorithms and examine the strengths and weaknesses

of the various methods. Specifically, we will examine how the proposed methods overcome

the challenges of AUC optimization as well as the theoretical convergence rate.

2.1 Advantages and Challenges of AUC for Measuring Perfor-

mance

In many application domains, AUC is used as the primary metric for evaluation instead

of accuracy. The motivating reason behind this is that, just like with ROC curves, AUC is

not susceptible to unequal class distributions. This is a compelling reason to use AUC over

accuracy in many different application domains. Even more so, an additional benefit of AUC

is that a classification problem can be reconsidered as a ranking problem. By the definition

of AUC, the samples are ordered according to positive samples being ranked over negative

samples. So not only will the samples be classified, but the samples in the minority class

with greatest certainty can be determined. This can be done without an initial ordering of

the samples. Only the initial class labels need to be known.

To make a more precise argument as to why AUC is better than accuracy, we first need

21

some important concepts as to how to compare two learning algorithms. Specifically, when

we compare two measures f and g for evaluating learning algorithms A and B, we desire that

both f and g be consistent with each other, i.e., if f concludes that algorithm A is strictly

better than algorithm B then measure g will not contradict this conclusion. Furthermore,

if f is more discriminating than g, then measure f should be able to tell the difference

between algorithms A and B, while measure g can not. We now make the following topics

more precise [55] with the following definitions:

Definition 2.1. (Consistency) For two measures f and g on domain Ω, f and g are

(strictly) consistent if there exists no a, b ∈ Ω such that f(a) > f(b) and g(a) < g(b).

Definition 2.2. (Discriminancy) For two measures f and g on domain Ω, f is (strictly)

more discriminating than g if there exists a, b ∈ Ω such that f(a) > f(b) and g(a) = g(b),

and there exist no a, b ∈ Ω such that g(a) > g(b) and f(a) = f(b).

A good way to gain a better understanding of this is to compare numerical marks and

letter marks for grading. Numerical marks are values 0, 1, ..., 100 while letter marks are A,

B, C, D, and F . Clearly numerical marks are consistent with letter marks (and vice versa),

but more importantly numerical marks are more discriminating than letter marks, i.e. two

students who receive 91 and 93 will both receive an A, but with letter marks it is impossible

to determine which student was better. We will now give the probabilistic versions of the

previous two definitions:

Definition 2.3. (Degree of Consistency) For two measures f and g on domain Ω, let

R = {(a, b)|a, b ∈ Ω, f(a) > f(b), g(a) > g(b)} and S = {(a, b) : Ω, f(a) > f(b), g(a) < g(b)}.
The degree of consistency of f and g is C (0 ≤ C ≤ 1), where C = |R|

|R|+|S| .

Definition 2.4. (Degree of Discriminancy) For two measures f and g on domain Ω, let

P = {(a, b)|a, b ∈ Ω, f(a) > f(b), g(a) = g(b)} and Q = {(a, b) : Ω, g(a) > g(b), f(a) = f(b)}.
The degree of discriminancy for f over g is D, where D = |P |

|Q| .

The connection between these two definitions is very important when evaluating two machine

learning algorithms. Consider that if f and g are consistent with some degree C, then if f

determines that A is better than B then there will also be a probability that g will determine

that A is also better than B. Also, if f is D times more discriminating than g, then it is D

22

times more likely that f can determine the difference between algorithms A and B where as

g cannot tell the algorithms apart. From this, it should be clear that if we want f to be a

better measure than g, then we require that C > 0.5 and D > 1. This leads to the following

definition:

Definition 2.5. The measure f is statistically consistent and more discriminating than g if

and only if C > 0.5 and D > 1. In this case, we say that f is a better measure than g.

Using the previous definitions we desire to show that AUC is statistically more con-

sistent and more discriminating than accuracy, by replacing the measure f by AUC and g

by accuracy. The domain Ω is the ranked lists of testing samples (with n− negative samples

and n+ positive samples). To show that AUC is better than accuracy it suffices to show that

C > 0.5 and D > 1. This is summarized in the following theorems:

Theorem 2.1 (Theorem 1 in [55]). Given a domain Ω, let R = {(a, b)|AUC(a) > AUC(b),

acc(a) > acc(b), a, b ∈ Ω} and S = {(a, b)|AUC(a) < AUC(b), acc(a) > acc(b), a, b ∈ Ω}.
Then |R|

|R|+|S| > 0.5 or |R| > |S|.

Theorem 2.2 (Theorem 2 in [55]). Given a domain Ω, let P = {(a, b)|AUC(a) > AUC(b),

acc(a) = acc(b), a, b ∈ Ω} and Q = {(a, b)|acc(a) < acc(b), AUC(a) = AUC(b), a, b ∈ Ω}.
Then |P | > |Q|.

From Theorem 2.1 and Theorem 2.2 it is clear that AUC gives more information about the

performance of a classifier than accuracy. These arguments make a strong justification that

AUC is a preferred metric over accuracy.

Even with the benefits of using the AUC score for measuring the performance of a

classifier, the measure still has some drawbacks. Recall that for a scoring function f(x) =

wTx, the AUC is defined as

AUC(f) = P(wTx ≥ wTx′|y = 1.y′ = −1),

where (x, y) and (x′, y′) are independent. It is clear from the definition that computing the

AUC score is quadratic in nature, meaning that it relies on pairs of samples. Worse yet,

those pairs need to be of opposite classes. In a real world scenario, data arrives sequentially,

23

not in pairs of different classes, making AUC difficult to adopt for streaming data. The

computational cost of the AUC score is of critical importance to overcome.

Lastly, an important question to consider is how do AUC and accuracy (or error rate)

relate. In [13], such a question was considered by examining the expectation and variance

of AUC. For a classification task with n+ positive samples and n− negative samples, the

expected value of AUC is the same as accuracy when n+ = n−. Otherwise, AUC is a

monotonic function of accuracy. This makes it seem that there is nothing to be gained from

designing algorithms that optimize AUC, i.e., a classification algorithm that minimizes the

error will also optimize the AUC. However, the variance tells a different story entirely. An

uneven class distribution will result in having a higher variance. The variance will further

be increased by any errors that have been made by the classifier. This contradicts the claim

in [109] that the error rate is zero for any error rate with even distributions (n+ = n−).

Overall, optimizing error rate will not lead to an optimized AUC score. Therefore, it is best

to optimize the AUC score directly.

2.2 Related Work

Designing algorithms that maximize the AUC score of a classifier is of much importance

to researchers. It has been statistically shown that optimizing the error rate does not lead

to optimized AUC values [13] and it is best to optimize the AUC score directly, however,

doing so has significant challenges that have been addressed in different ways.

One of the first cases of optimizing the AUC score was with decision trees [30]. Typ-

ically, accuracy was used to measure the performance of a classifier. However, as argued

in Section 1.2, accuracy is not appropriate when the misclassification costs are unequal or

unknown. For a binary classification problem with n samples, there are 2n possible classi-

fiers that can be formed. Using ROC analysis, the classification from these classifiers can

be viewed as an ordering of the data. This viewpoint has special characteristics such as for

a given classifier, there exists a classifier that makes opposite predictions. The authors pro-

posed a AUC-based splitting criterion, instead of an accuracy based approach. To eliminate

some of the 2n possibilities, it was determined that the convex hull of the 2n possible out-

comes is determined by the ROC points that have optimal labelings of the data. This led to

better AUC values without loosing the same degree of accuracy using an accuracy-splitting

24

approach.

Optimizing the AUC score directly, however, presents major challenges due to the pair-

wise nature of the method. A common approach was to design algorithms that maximized

an approximation of the AUC value [65, 109]. One of the earliest proposed strategies, the

RankOpt algorithm, used gradient descent to optimize the AUC score directly by using the

AUC statistic as its objective function [39]. AUC can be defined as:

AUC(f) =

∑n+

i=1

∑n−
j=1 If(xi)>f(xj)

n+n−
. (2.1)

Clearly from this formulation, AUC is not differentiable. To account for this, the authors

replaced the indicator function with the heavy-side function:

g(x) =


0 x < 0

0.5 x = 0

1 x > 0.

AUC can then be reformulated as:

ˆAUC(f) =
1

n+n−

n+∑
i=1

n−∑
j=1

g(f(xi)− f(xj)), (2.2)

where (2.2) is an unbiased estimator for AUC. However, the above formulation is again not

differentiable. The authors replaced g(x) by the sigmoid function, s(x) = 1/(1 + e−x), since

lim|x|→∞ s(x) = g(x) implies that for large ‖x‖ the sigmoid function is a good approximation

for AUC [109]. The first and second derivatives of the sigmoid function can also be easily

determined. The computational complexity of the formulation is still O(n2) in the number

of observations. To overcome this, the authors proposed the following relationships for two

positive class observations xi1 and xi2 and two negative class observations xj1 and xj2 :

(xi1 − xj1) + (xi2 − xj2) = (xi1 − xj2) + (xi2 − xj1). (2.3)

Note that for these four pairs, the argument to the sigmoid function for any of these is

completely determined by the other three pairs. Thus, using all n+n− pairs is not necessary.

25

The authors suggest to use only the (k mod P)-th observation. This gives the following

ranking statistic, which is of O(n) complexity,

Rl(w) =
1

n−

n−∑
j=1

s(wT (x(k mod P) − xk) (2.4)

Performing gradient descent on Rl(w) will lead to an optimized AUC score, however, this

is based on an approximation of the AUC score. This does not directly optimize the true

AUC.

Another early method for optimizing the AUC score was to use support vector machines

[84]. First, the authors considered the setup of trying to learn a linear classifier of the form

sign(f(x)) where f(x) = 〈w,x〉+ b and w ∈ Rd. AUC optimization is then equivalent to:

AUC =

∑n+

i=1

∑n−
j=1 Iξij>0

n+n−

ξij = f(x+
i)− f(x−j).

Hence the problem of maximizing AUC becomes:

max
w

1

n+n−

n+∑
i=1

n−∑
j=1

Iξij>0

with ξij = f(x+
i)− f(x−j), 1 ≤ i ≤ n+, 1 ≤ j ≤ n−.

Again, this formulation has several issues that need to be addressed. The objective function

is not differentiable over the range of ξij. Another issue is that the solution might not be

unique. To overcome these two issues, an approximated differentiable function is needed

along with a regularizer to avoid overfitting. Therefore, AUC optimization is equivalent to

the following minimization problem:

min
w

1

2
‖w‖2 + C

n+∑
i=1

n−∑
j=1

ξij

with f(x+
i) ≥ f(x−j) + ρ− ξij, 1 ≤ i ≤ n+, 1 ≤ j ≤ n−

ξij ≥ 0, 1 ≤ i ≤ n+, 1 ≤ j ≤ n−.

26

The parameter C allows for trade-off between the regularization term and the constraint

violation ξij. It is important to note that the authors chose a linear function of ξij. Other

works have done this in a similar manner [109]. The above optimization problem can now be

easily solved via Lagrange multipliers. The Lagrangian function of the above optimization

is:

L(w, ξi,j) =
1

2
‖w‖2 + C

n+,n−∑
i,j=1

ξij −
n+,n−∑
i,j=1

αij(〈w,x+
i − x−j 〉)− ρ+ ξij)−

n+,n−∑
i,j=1

γijξij.

The Lagrangian derivatives are:

∂L

∂w
= w −

n+,n−∑
i,j=1

α(x∗i − x∗j),

∂L

∂ξu,v
= C − αu,v − γu,v.

Using the above derivatives leads to the following dual optimization problem:

max
α
−1

2

n+,n−∑
i,j=1

n+,n−∑
u,v=1

αi,jαu,v〈x∗i − x−j ,x
∗
u − x−v 〉+ ρ

n+,n−∑
i,j=1

αi,j

with C ≥ αi,j ≥ 0.

This quadratic optimization problem can then be solved using classical algorithms such as

interior point or active constraint methods. Similarly to classical SVM, w shows that the

decision function depends only on the data points. For this specific case, it only depends on

the difference between negative and positive pairings:

f(x) =

n+,n−∑
i,j=1

α∗i,j〈x+
i − x−j ,x〉+ b,

where α∗i,j are the solutions to the dual problem.

Recently, there has been work in creating online algorithms for maximizing the per-

formance of a classifier by maximizing the AUC score. The first of which, Online AUC

Maximization (OAM) [118], attempts to overcome the issue of the quadratic nature of com-

puting the AUC score. The algorithm begins with the following objective function using

27

Algorithm 4 Online AUC Maximization (OAM)

Input: the penalty parameter C, the maximum buffer size N+ and N−
Initialize: w1 = 0, B1

+ = B1
− = ∅, N1

+ = N1
− = 0

for t = 1, 2, ..., T do
Receive training instance (xt, yt)
if yt = +1 then
N t+1

+ = N t
+ + 1, N t+1

− = N t
−, Bt+1

− = Bt
−

Ct = C max(1, N t
−, N−)

Bt+1
+ =UpdateBuffer(Bt

+,xt, N+, N
t+1
+)

wt+1 =UpdateClassifier(wt, yt, Ct, B
t+1
−

else
N t+1
− = N t

− + 1, N +−t+1 = N t
+, Bt+1

+ = Bt
+

Ct = C max(1, N t
+, N+)

Bt+1
− =UpdateBuffer(Bt

−,xt, N−, N
t+1
−)

wt+1 =UpdateClassifier(wt, yt, Ct, B
t+1
+

end if
end for

hinge loss:

L(w) =
λ

2
‖w‖2 +

n+∑
i=1

n−∑
j=1

max{0, 1−wT (x+
i − x−j)}. (2.5)

To overcome this challenge, the authors rewrite the loss function as a sum of losses for

individual instances, i.e. L(w) =
∑T

t=1 Lt(w) where:

Lt(w) = Iyt=1h
t
+(w) + Iyt=−1h

t
−(w). (2.6)

In (2.6), ht±(w) are defined as:

ht+(w) =
t−1∑
t′=1

Iyt′=−1`(w, xt − xt′) and ht−(w) =
t−1∑
t′=1

Iyt′=+1`(w, xt′ − xt). (2.7)

From this, the main idea behind the algorithm is to use reservoir sampling [105]. Specifically,

for a given training sample (xt, yt), it will be added to the buffer Bt
yt if | Bt

yt |< Nyt .

Otherwise, with probability
Nyt
Nt+1
yt

, the buffer will be updated by randomly replacing one

instance in Bt
yt with xt. This is summarized in Algorithm 5. Although not all samples need

to be stored, a buffer of sufficient size still needs to be maintained. Different variations of the

algorithm were proposed. These methods are summarized in Algorithm 6 and Algorithm 7.

A drawback of the algorithm is that some samples still need to be stored. This could prove

28

Algorithm 5 A Reservoir Sampling Approach for UpdateBuffer
Input:

• Bt: the current buffer

• xt: a training instance

• N : the buffer size

• Nt+1: the number of instances received till trial t

Output: Updated buffer Bt+1

if |Bt| < N then
Bt+1 = Bt ∪ {xt}

else
Sample Z from a Bernoulli distribution with Pr(Z = 1) = N/Nt+1

if Z = 1 then
Randomly delete an instance from Bt

Bt+1 = Bt ∪ {xt}
end if

end if
Return Bt+1

challenging with high dimensional data, however, the novelty of the algorithm at the time

provided a path forward to design algorithms that directly optimize the AUC score. The

various versions all converge with the same rate of O(1/
√
T).

One-Pass AUC Maximization (OPAUC) [34], again began with a similar objective

function, but instead used the least square loss:

L(w) =
λ

2
‖w‖2 +

n+∑
i=1

n−∑
j=1

(1−wT (x+
i − x−j))2

2n+n−
. (2.9)

To address the challenge of L(w), the authors modified the loss function, similarly like OAM,

to a sum of losses over individual samples, i.e. L(w) =
∑T

t=1 Lt(w) where:

Lt(w) =
λ

2
‖w‖2 +

∑t−1
i=1 I[yi 6= yt](1− yt(xt − xi)

Tw)2

2|{i ∈ [t− 1] : yiyt = −1}|
. (2.10)

29

Algorithm 6 A Sequential Updating Approach for UpdateClassifier
Input:

• wt: the current classifier

• (xt, yt): a training example

• B: the buffer to which the training example will be compared

• Ct: a parameter that weights the comparison between (xt, yt) and B

Output: Updated classifier wt+1

Initialize: w1 = wt and i = 1
for x ∈ B do

Update classifier wi by

wi = argmin
w
|w −wi|22 + Ct`(w, yt(xt −w)) (2.8)

i = i+ 1
end for
Return wt+1 = w|B|+1

Then taking the gradient of Lt(w) when yt = 1 gives

∇Lt(w) = λw + xtx
T
t − xt

+
∑

i:yi=−1

(xi + (xix
T
i − xix

T
t − xtx

T
i)w)/T−t .

The authors noticed that is is easy to observe that: c−t =
∑

i:yi=−1 xi/T
−
t and S−t =∑

i:yi=−1(xix
T
i − c−t [c−t]T)/T−t correspond to the mean and covariance matrix of the negative

class. Thus we have:

∇Lt(w) = λw − xt + c−t + (xt − c−t)(xt − c−t)Tw + S−t w. (2.11)

We can repeat this process for when yt = 1. This gives that:

∇Lt(w) = λw + xt − c+
t + (xt − c+

t)(xt − c+
t)Tw + S+

t w, (2.12)

where c+
t =

∑
i:yi=1 xi/T

+
t and S+

t =
∑

i:yi=1(xix
T
i − c+

t [c+
t]T)/T+

t correspond to the mean

and covariance matrix of the positive class. We can then update the mean for both the

30

Algorithm 7 A Gradient Updating Approach for UpdateClassifier
Input:

• wt: the current classifier

• (xt, yt): a training example

• B: the buffer to which the training example will be compared

• Ct: a parameter that weights the comparison between (xt, yt) and B

Output: Updated classifier wt+1

Initialize: wt+1 = wt and i = 1
for x ∈ B do

if ytwt · (xt − x) ≤ 1 then
wt+1 = wt+1 + Ctyt(xt − x)/2

end if
end for
Return wt+1

negative and positive class as follows:

c−t = c−t−1 +
1

T−t
(xt − c−t−1), c+

t = c+
t−1 +

1

T+
t

(xt − c+
t−1). (2.13)

To update the covariance matrices, we can define Γ−0 = Γ+
0 = [0]d×d to be the covariance

matrix for the positive and negative classes. Then at each iteration the covariance matrices

for the positive and negative classes can be updated as follows:

Γ−t = Γ−t−1 +
xtx

T
t − Γ−t−1

T−t
+ c−t−1[ct−1]T − c−t [c−t]T , (2.14)

Γ+
t = Γ+

t−1 +
xtx

T
t − Γ+

t−1

T+
t

+ c+
t−1[ct−1]T − c+

t [c+
t]T . (2.15)

Once the gradient has been calculated, then the solution of wt+1 is updated by wt+1 =

wt − ηt∇L(wt). A summary of the algorithm is in Algorithm 8. However, an issue is

that the mean and covariance matrices need to be stored. In particular, the storage of

the covariance matrix is of the order O(d2). For high dimensional data, this could become

problematic. The authors anticipated this and reasoned that the covariance matrix could

be approximated by a low rank matrix, however, the results are not as strong. Just as with

OAM, OPAUC has a convergence rate of O(1/
√
T), however, the algorithm may be hindered

31

Algorithm 8 One-Pass AUC Maximization (OPAUC)

Input: The regularization parameter λ > 0 and step size {ηt}Tt=1.
Initialize: Set T+

0 = T−0 = 0, c+
0 = c−0 = 0, w0 = 0, and Γ+

0 = Γ−0 = [0]d×u for some
u > 0.
for t = 1, 2, ..., T do

Receive training instance (xt, yt)
if yt = +1 then
T+
t = T+

t−1 + 1 and T−t = T−t−1

c+
t − = c+

t−1 + 1
T+
t

(xt − c+
t−1 and c−t = c−t−1

Update Γ+
t and Γ−t = Γ−t−1

Calculate the gradient ĝt(wt−1)
else
T−t = T−t−1 + 1 and T+

t = T+
t−1

c−t = c−t−1 + 1
T−t

(xt − c−t−1 and c+
t = c+

t−1

Update Γ−t and Γ+
t = Γ+

t−1

Calculate the gradient ĝt(wt−1)
end if
wt = wt−1 − ηtĝt(wt−1)

end for

by the storage of the covariance matrix.

Similarly, to OAM and OPAUC, a sub-gradient method for AUC maximization has also

been proposed [21]. The Adaptive Online AUC Maximization (AdaOAM) algorithm is based

on the same ideas and assumptions as OPAUC [34]. Taking the same loss function as in

(2.10), the mean and covariance matrix of the positive and negative classes can be calculated

as before. Once the gradient gt = ∇Lt(wt) has been calculated, the critical step is to move

the current solution wt in the opposite direction of the gradient gt while maintaining the

constraint ‖wt+1‖ ≤ 1/
√
λ for the projected gradient update [120]:

wt+1 = Π‖w‖≤1/
√
λ(wt − ηgt) = arg min

‖w‖≤1/
√
λ
‖w − (wt − ηgt)‖2

2, (2.16)

since ‖w∗‖ ≤ 1/
√
λ. A critical issue though is that the above assigns different features with

the same learning rate. To perform feature-wise gradient updating, the authors proposed a

second-order gradient optimization method, Adaptive Gradient Updating inspired by [23].

The algorithm is summarized in Algorithm 9. The notation g1:t = [g1...gt] is the matrix

obtained by concatenating the gradient sequences together. Additionally, the i-th row of

this matrix given by g1:t,i which, accidentally, is also a concatenation of the i-th component

32

Algorithm 9 Adaptive Online AUC Maximization (AdaOAM)

Input: The regularization parameter λ, the learning rate {η}Tt=1, the smooth parameter
δ ≥ 0.
Output: Updated classifier wt.
Variables: s ∈ Rd, H ∈ Rd×d, g1:t,i ∈ Rt for i ∈ {1, ..., d}.
Initialize: w0 = 0, c+

0 = c−0 = 0,Γ+
0 = Γ−0 = [0]d×d, T

+
0 = T−0 = 0, g1:0 = [].

for t = 1, 2, ..., T do
Receive an incoming instance (xt, yt)
if yt = 1 then
T+
t = T+

t−1 + 1, T−t = T−t−1

c+
t = c+

t−1 + 1
T+
t

(xt − c+
t−1) and c−t = c−t−1

Update Γ+
t and Γ−t = Γ−t−1

Receive gradient gt = ∇Lt(w)
Update g1:t = [g1:t−1gt], st,i = ‖g1:t,i‖2

Ht = δI + diag(st)
ˆ̂gt = H−1

t gt
else
T+
t = T+

t−1, T−t = T−t−1 + 1
c−t = c−t−1 + 1

T−t
(xt − c−t−1) and c+

t = c+
t−1

Update Γ−t and Γ+
t = Γ+

t−1

Receive gradient gt = ∇Lt(w)
Update g1:t = [g1:t−1gt], st,i = ‖g1:t,i‖2

Ht = δI + diag(st)
ˆ̂gt = H−1

t gt
end if
wt = ΠHt

1/
√
λ
(wt−1 − ηtĝt)

end for

of each gradient. Lastly, the outer matrix product is denoted by Gt =
∑t

τ=1 gτg
T
τ . Using

these previous notations, the generalization of the standard adaptive gradient descent leads

to the following weight update:

wt+1 = Π
G

1/2
t

‖w‖≤1/
√
λ
(wt − ηG−1/2

t gt) = arg min
‖w‖≤1/

√
λ
‖w − (wt − ηG−1/2

t gt)‖G1/2
t

= arg min
‖w‖≤1/

√
λ
〈w − (wt − ηG−1/2

t gt), G
1/2
t (w − (wt − ηG−1/2

t gt))〉.

The above equation is just the Mahalanobis norm for the projection of a point onto the set

{w|‖w‖ ≤ 1/
√
λ}. A major drawback of this algorithm is that a large amount of time will

33

be needed to calculate the root and inverse root of the outer matrix Gt for high dimensional

data. To enable the algorithm to handle high dimensional data, a diagonal proxy of Gt is

used to make the update:

wt+1 = Π‖w‖≤1/
√
λ(wt − ηdiag(Gt)

−1/2gt). (2.17)

This will enable the root and inverse root of diag(Gt) to be computed in linear time. However,

this results in one last issue to consider that diag(Gt) might not be invertible. To handle

this issue, take Ht = δI + diag(Gt)
1/2, where δ > 0 is very small. This will ensure that the

diagonal matrix is invertible and the algorithm is robust. So given Ht, the update of the

feature-wise adaptive update then becomes:

wt+1 = ΠH−t
‖w‖≤1/

√
λ
(wt − ηHtgt) (2.18)

AdaOAM should have a lower regret bound than non-adaptive algorithms due to its using

the geometry of the data space. The gradient terms should be smaller than
√
T . If the

feature space is dense, then the convergence rate will be O(1/
√
T) just as in OPAUC and

OAM.

Recently, the work done by [113] considers the least square loss function and takes an

entirely different approach. The authors assume that the training data z = {(xi, yi), i =

1, ..., n} is i.i.d., and drawn from an unknown distribution ρ on Z = X × Y . Recall that for

a given scoring function f : X → R, the area under the ROC curve (AUC) is the probability

of a positive sample ranking higher than a negative sample [10]. Therefore, the AUC is:

AUC(f) = Pr(f(x) > f(x′)|y = +1, y′ = −1), (2.19)

where (x, y) and (x′, y′) are independently drawn from ρ. As previously discussed, we want

the classifier with the ROC curve that dominates all others, i.e., has the greatest AUC score.

So the target of AUC maximization is to find the optimal decision function f :

arg max
f

AUC(f) = arg min
f

Pr(f(x) < f(x′)|y = 1, y′ = −1)

= arg min
f

E
[
I[f(x′)−f(x)>0]

∣∣y = 1, y′ = −1
]
, (2.20)

34

where I(·) is the indicator function. Define p = Pr(y = 1) and recall that for any random

variable ξ(z), its conditional expectation is defined by E[ξ(z)|y = 1] = 1
p

∫∫
ξ(z)Iy=1dρ(z).

Since I(·) is not continuous, it is often replaced by a convex surrogates. The authors used

the `2 loss, as it has been shown to be statistically consistent with AUC while the hinge loss

is not [35]. AUC maximization can be formulated by

argmin
w

E
[
(1−w>(x− x′))2|y = 1, y′ = −1

]
+
λ

2
‖w‖2

= argmin
w

1

p(1− p)

∫∫
Z×Z

(1−w>(x− x′))2I[y=1]I[y′=−1]dρ(z)dρ(z′).
(2.21)

This objective function can be exploited to reduce this problem from a double integral to

a single integral. Equation (3.2) can be reformulated as a stochastic saddle point problem

(SPP) [70].

Definition 2.6. A stochastic SPP is generally in the form of

min
u∈Ω1

max
α∈Ω2

{
f(u, α) := E[F (u, α, ξ)]

}
, (2.22)

where Ω1 ⊆ Rd and Ω2 ⊆ Rm are nonempty closed convex sets, ξ is a random vector with

non-empty measurable set Ξ ⊆ Rp, and F : Ω1 × Ω2 × Ξ → R. Here E[F (u, α, ξ)] =∫
Ξ
F (u, α, ξ)dPr(ξ), and function f(u, α) is convex in u ∈ Ω1 and concave in α ∈ Ω2. In

general, u and α are referred to as the primal variable and the dual variable, respectively.

In order to state the main result, we first define F : Rd × R3 × Z → R, for any w ∈ Rd,

a, b, α ∈ R and z = (x, y) ∈ Z, by

F (w, a, b, α; z) = (1− p)(w>x− a)2I[y=1] + p(w>x− b)2I[y=−1]

+ 2(1 + α)(pw>xI[y=−1] − (1− p)w>xI[y=1])− p(1− p)α2. (2.23)

Theorem 2.3 (Theorem 1 in [113]). The AUC optimization (3.3) is equivalent to

min
w∈Rd

(a,b)∈R2

max
α∈R

{
f(w, a, b, α) :=

∫
Z
F (w, a, b, α; z)dρ(z)

}
. (2.24)

The authors applied projected gradient descent to solve the above formulation as in [70].

35

Algorithm 10 Stochastic Online AUC Maximization (SOLAM)

Input: Step size {γt}Tt=1.
Initialize: v1 ∈ Ω1, α1 ∈ Ω2, and let p̂0 = 0, v̄0 = 0, ᾱ0 = 0, γ̄0 = 0.
for t = 1, 2, ..., T do

Receive training instance (xt, yt) and compute p̂t =
(t−1)p̂t−1+I[yt=1]

t

Update vt+1 = PΩ1(vt − γt∂vF̂t(vt, αt, zt))
Update αt+1 = PΩ2(αt − γt∂αF̂t(vt, αt, zt))
Update γ̄t = γ̄t−1 + γt
Update v̄t = 1

γ̄
(γ̄t−1v̄t−1 + γtvt), and ᾱt = 1

γ̄t
(γ̄t−1ᾱt−1 + γtαt)

end for

Since the value of p is generally unknown, an unbiased stochastic estimator of the true

gradient to perform was used instead:

F̂t(v, α, z) = (1− p̂t)(w>x− a)2I[y=1] + p̂t(w
>x− b)2I[y=−1]

+ 2(1 + α)(p̂tw
>xI[y=−1] − (1− p̂t)w>xI[y=1])− p̂t(1− p̂t)α2. (2.25)

where p̂t =
∑t
i=1 I[yi=1]

t
at iteration t and v = (w, a, b). For each iteration t, the method uses

the stochastic estimator

Ĝt(v, α, z) = (∂vF̂t(v, α, z),−∂αF̂t(v, α, z)) (2.26)

to replace the unbiased, but practically inaccessible, stochastic estimator G(v, α, z). Assume

κ = supx∈X ‖x‖ <∞, and recall that ‖w‖ ≤ R. It is important to note that (w, a, b) and α

can be restricted to the following bounded domains:

Ω1 =
{

(w, a, b) ∈ Rd+2 : ‖w‖ ≤ R, |a| ≤ Rκ, |b| ≤ Rκ
}

Ω2 =
{
α ∈ R : |α| ≤ 2Rκ

}
.

In this case, the projection steps (e.g. steps 4 and 5) in SOLAM can be easily computed.

The pseudo-code of the online AUC optimization algorithm is described in Algorithm 10.

As for the convergence analysis, the authors used the duality gap to measure the

performance of an approximate solution:

εf (v̄t, ᾱt) = max
α∈Ω2

f(v̄t, α)− min
v∈Ω1

f(v, ᾱt), (2.27)

36

Algorithm 11 Fast Stochastic AUC Maximization (FSAUC)

Set: m = b1
2

log2
2n

log2 n
c − 1, n0 = bn/mc, R0 = 2

√
1 + 2κ2, G > max((1 + 4κ)κ(R +

1), 2κ(2R + 1 + 2Rκ), 2κ(4κR + 11R + 1)), β0 = (1 + 8κ)2, and D0 = 2
√

2κR0

Initialize: v̂0 = 0 ∈ Rd+2, α̂0 = 0
for t = 1, 2, ..., T do

Set ηk =

√
βk−1

G
√

2n0
Rk−1

Call PDSG to obtain

(v̂k, α̂k, βk, Rk, Dk) = PDSG(v̂k−1, α̂k−1, βk−1, Rk−1, Dk−1, n0, ηk) (2.28)

end for
Return v̂m

which results in a convergence rate of O(1/
√
T). While the convergence rate is obtained by

choosing decaying step sizes, one can establish a similar result when a constant step size is

appropriately chosen.

Continuing with the work based on [113] was expanded upon by [59]. The authors

proposed a similar primal-dual style algorithm, but with a constant step size. The primal

variables w, a, and b and the dual variable α are projected into an intersection of their con-

strained domains and an `2 balled centered at the initial solution. These modifications allow

the algorithm to achieve a O(1/T) convergence rate by way of a geometrically decreasing

radius r. The method is summarized in Algorithms 11 and 12.

A completely different approach to optimizing AUC, or rather any other metric that can

be computed from the contingency table, was based on the sparse approximation algorithm

for structural SVMs [100, 102]. This new method can be interpreted as a generalization of

Algorithm Loss Penalty Storage Iteration Rate

OAM General L2 O(sd) O(sd) O(1/
√
T)

AdaOAM General L2 O(td) O(td) O(1/
√
T)

OPAUC Least-Square L2 O(d2) O(d2) O(1/
√
T)

SOLAM Least-Square L2 O(d) O(d) O(1/
√
T)

Table 2.1: A comparison of existing online algorithms for AUC maximization.
Note that s is the buffer size and t is the current iteration.

37

Algorithm 12 PDSG(v1, α1, r,D, T, η)

Initialize: Â+ ∈ Rd+2, Â− ∈ Rd+2, T+, T−, p̂ ∈ R as zeros
for t = 1, 2, ..., T do

Receive a sample zt = (xt, yt)
Update Â±, T̂±, p̂ using data zt
vt+1 = ΠΩ1∩B(v1,r)(vt − η∂vF̂t(vt, αt, zt))

αt+1 = ΠΩ1∩B(α1,r)(αt + η∂αF̂t(vt, αt, zt))
end for

Compute v̄T =
∑T
t=1 vt
T

and α̂T =
(
Â−
T−
− Â+

T+

)T
v̄T

Let r = r/2
Update β,D according to lemma 1
Return (v̄T , α̂, β, r,D)

Algorithm 13 Algorithm for Solving Quadratic Problem of Multivariate SVM∆
multi

Input: x̄ = (x1, ...,xn), ȳ = (y1, ..., yn), C, ε, Ȳ
C ← ∅
while C is changing do
ȳ′ ← argmaxȳ∈Ȳ{∆(ȳ, ȳ′) + wTΨ(x̄, ȳ′)}
ξ ← maxȳ′∈C

{
max{0,∆(ȳ′, ȳ)−wT [Ψ(w̄, ȳ)−Ψ(x̄), ȳ′)]}

}
if ∆(ȳ, ȳ′)−wT [Ψ(w̄, ȳ)−Ψ(x̄, ȳ′)] > ξ + ε then
C ← C ∪ {ȳ′}
w← optimize SVM∆

multi objective over C
end if

end while
Return w

SVMs [41]. To describe this method, we first begin with the following optimization problem:

min
w,ξ≥0

1

2
w ·w + C

n∑
i=1

ξi

s.t. : ∀ni=1 : yi[w · xi] ≥ 1− ξi. (2.29)

The symbols in the above formulation have standard meanings. Essentially, if a training

sample is not on the correct side of the hyperplane, the slack variable ξi will be greater than

1 giving that
∑n

i=1 ξi is an upper bound on the number of errors.

To use this problem to allow SVMs to optimize different non-linear classifiers, the

main idea is to consider the learning problem as a multivariate prediction problem. Many

algorithms define the function f to be learned to only consider a single feature vector x

38

Algorithm 14 Algorithm for computing argmax with loss functions that can be computed
with the contingency table

Input: x̄ = (x1, ...,xn), ȳ = (y1, ..., yn), Ȳ
(ip1, ..., p

p
#pos)← sort {i : yi = 1} by wTxi

(in1 , ..., p
n
#neg)← sort {i : yi = −1} by wTxi

for a ∈ [0, ...,#pos] do
c← #pos− a
Set y′ip1 , ..., y

′
ipa

to 1 AND set y′ipa+1
, ..., y′ip#pos to −1

for d ∈ [0, ...,#neg] do
b← #neg − d
Set y′in1 , ..., y

′
inb

to 1 AND set y′inb+1
, ..., y′in#neg to −1

v ← ∆(a, b, c, d) + wT
∑n

i=1 y
′
ixi

if v is the largest so far then
ȳ∗ ← (y′1, ..., y

′
n)

end if
end for

end for
Return ȳ∗

and single label y ∈ {±1}. Instead the authors consider a function f̄ : X̄ → Ȳ where

X̄ = X × ... × X and Ȳ = {±1}n are the set of all possible vectors. To determine the

mapping, the authors consider the function of the following form:

h̄w(x̄) = argmax
ȳ′∈Ȳ

{
wTΨ(x̄, ȳ′)

}
(2.30)

For a fixed parameter w and Ψ, a function that returns a vector that describes the relation-

ship between x̄ and ȳ′, the function gives the tuple ȳ′ of labels that gives the highest score

according to a linear function. The authors restricted their results to Ψ of the form:

Ψ(x̄, ȳ′) =
n∑
i=1

y′ixi. (2.31)

In other words, the argmax is achieved when y′i is assigned to h(xi). A benefit of this formu-

lation is that this is equivalent to the original SVM problem, however, we can reformulate

39

Algorithm 15 Algorithm for computing argmax with ROCArea-loss

Input: x̄ = (x1, ...,xn), ȳ = (y1, ..., yn), Ȳ
for i ∈ {i : yi = 1} do
si ← −0.25 + wTxi

end for
for i ∈ {i : yi = −1} do
si ← 0.25 + wTxi

end for
(r1, ..., rn)← sort {1, ..., n} by si
sp = #pos, sn = 0
for ∈ {1, ..., n} do

if yri > 0 then
cri ← (#neg − 2sn)
sp ← sp − 1

else
cri ← (−#pos+ 2sp)
sn ← sn + 1

end if
end for
Return (c1, ..., cn)

it as below:

min
w,ξ≥0

1

2
‖w‖2 + Cξ

s.t.∀ȳ′ ∈ Ȳ/ȳ : wT [Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)] ≥ ∆(ȳ′, ȳ)− ξ, (2.32)

where ∆(ȳ′, ȳ) is a sample based loss function.

Solving the above problem may seem complicated due to the exponential size of Ȳ ,

however, by adapting the the sparse approximation algorithm, this problem can be solved in

polynomial time for many types of loss function ∆(a, b, c, d) [102]. Therefore, the solution of

argmax
ȳ′∈Ȳ

{∆(a, b, c, d) + wTΨ(x̄, ȳ′)} (2.33)

can be solved by Algorithm 14 in polynomial time for any loss function that can be computed

in polynomial time. More importantly, is the following result for the relationship between

the SVM formulations.

Theorem 2.4 (Theorem 1 in [41]). At the solution w∗, ξ∗ of the SVM∆
multi optimization

40

Algorithm 16 Mini-Batch AUC Optimization (MBA)

Require: B, T , λ1, λ2

Input: X+, X−

Output: w∗

µS = 0 and ΣS = 0
for t = 1, . . . , T do

Construct index set S+
t of size B sampling positive examples uniformly with replace-

ment.
Construct index set S−t of size B sampling negative examples uniformly with replace-
ment.
Construct St(i=(S+

t (i), S−t (i)), for i = 1, . . . , B.
µS ← µS + 1

BT

∑
(i,j)∈St(x

+
i − x−j)

ΣS ← ΣS + 1
BT

∑
(i,j)∈St(x

+
i − x−j)(x+

i − x−j)T

end for
w∗ = argminw

1
2
wTΣSwT −wTµS + λ1‖w‖1 + λ2

2
‖w‖2

2

problem on the training data x̄ with labels ȳ, the value of ξ∗ is an upper bound on the

training loss ∆(h̄w∗(x̄, ȳ).

The above theorem shows that Problem 2.32 is similar to Problem 2.29. The method

outlined in Algorithm 13 is based on a sparse approximation algorithm to give the solution

to Problem 2.32. The importance of solving Problem 2.32 is that it can be used to design

algorithms to optimize performance metrics that are obtained from the confusion matrix.

The ideas here can be modified to optimize the AUC score as well. The critical observation

is to use the idea of swapped pairs :

Swapped Pairs =| {(i, j) : (yi > yj) and (wTxi < wTxj)} | .

AUC can be defined as:

AUC = 1− Swapped Pairs

n+n−
.

With this definition of AUC, the AUC score can be optimized in O(n log n) time.

The method proposed in [36] is based on a convex relaxation of the AUC function, but

instead of using stochastic gradients, the algorithm, called Mini-Batch AUC Optimization

(MBA), uses the first and second order U-statistics of pairwise distances. The authors use a

41

slightly similar method to [113] where they use the definition of AUC as an expectation:

R(f) = E[(1−wT (x+
i − x−j))2]

= 1− 2wTE[(x+
i − x−j)] + wTE[(x+

i − x−j)(x+
i − x−j)T]w

= 1− 2wTµ+ wTΣw,

where xij = (x+
i −x−j), µ = E[xij], and Σ = E[xijx

T
ij]. Note that µ and Σ are the mean and

variance of xij. The challenge is then to solve the following minimization problem:

w∗ = argmin
w

1

2
wTΣw − 2wTµ.

Determining µ and Σ is difficult since the number of pairs grows quadratically as the number

of samples increases. The authors suggest to overcome these issues by sampling at each round

t. Selecting B positive samples and B negative samples with replacement to create sets S+
t

and S−t , respectively, with St = (S+
t , S

−
t). Therefore, the first and second statistics can be

computed as follows:

µt =
1

B

∑
(i,j)∈St

(x+
i − x−j)

Σt =
1

B

∑
(i,j)∈St

(x+
i − x−j)(x+

i − x−j)T .

Letting S = BT be number of pairs sampled by the algorithm and using the notation of S1:T

for all pairs of samples, we have the following approximations:

µS =
1

BT

∑
(i,j)∈S1:T

(x+
i − x−j)

ΣS =
1

BT

∑
(i,j)∈S1:T

(x+
i − x−j)(x+

i − x−j)T .

Using the above constructions, we can state the objective function to optimize the AUC

score. Note that the authors used elastic net to avoid over fitting:

w∗S = argmin
w

1

2
wTΣSw − 2wTµS + λ1‖w‖1 +

λ2

2
‖w‖2

2.

42

Algorithm 17 Proximal SVRG for AUC Maximization

Input: Constant step size η and update frequency m
Initialize: w̄0

for s = 1, 2, . . . do
w̄s−1

µ = 1
n

∑n
i=1 G(w̄, zt)

w0 = w̄
for t = 1, . . . ,m do

Randomly pick it ∈ {1, . . . , n} and update weight
w = wt−1 − η(G(wt−1, zit)−G(w̄, zit) + µ̄)
wt = proxηΩ(w)

end for
end for
w̄s = wm

A critical feature of this approach is that it is learning rate free as training the step size is

a time consuming task. The method is outline in Algorithm 16.

Finally, another consideration of SGD is the high variance that can result from the

process of the step size decaying to zero. Variance reduction methods [43] have been devel-

oped to resolve such an issue and have been applied recently to AUC optimization [18]. The

work done by the authors is a direct extension of the work in chapter 4. The main idea of

the method is to only update w̄ after m iterations and to calculate the full gradient given

by:

µ =
1

n

n∑
i=1

G(w̄, zi). (2.34)

This information is then used to update the next m gradients. For each step t, ii ∈ {1, . . . , t},
we compute wt = wt−1 = ηvt where:

vt = G(wt−1, zit)−G(w̄, zit) + µ̄.

The method is summarized in Algorithm 17 and is shown to have a faster rate of convergence

than the method in chapter 4, however, this method has a higher per iteration complexity

than the method in chapter 4.

43

Chapter 3

Regularized AUC Maximization

This chapter is based on the work as done in [113] of reformulating AUC optimization as

a saddle point problem, but with the inclusion of a regularization term. The theorems and

proofs are all done in a similar spirit. The algorithm developed in this section forms a

baseline for comparison with the algorithms developed in chapters 4 and 5.

3.1 Problem Formulation

Recall from Chapter 1 that we previously defined the input space to be X ⊆ Rd and

the output space to be Y = {−1,+1}. The training data, z = {(xi, yi), i = 1, . . . , n}, is

assumed to be an i.i.d. sample drawn from an unknown distribution ρ on Z = X ×Y . Using

these notations, the area under the ROC curve (AUC) for any scoring function f : X → R

is equivalent to the probability of a positive sample ranking higher than a negative sample

[10, 37],

AUC(f) = Pr(f(x) ≥ f(x′)|y = +1, y′ = −1), (3.1)

where (x, y) and (x′, y′) are independently chosen from ρ. The scoring function f is restricted

to the family of linear functions, i.e., f(x) = w>x. Therefore, optimizing the AUC score

means to find the optimal decision function f :

arg max
f

AUC(f) = arg min
f

Pr(f(x) < f(x′)|y = 1, y′ = −1)

= arg min
f

E
[
I[f(x′)−f(x)>0]

∣∣y = 1, y′ = −1
]
, (3.2)

where I(·) is the indicator function. From the above formulation (3.2), the indicator function

is not continuous nor convex. It is common practice to replace it by a convex surrogate loss

function. In this work, we will use the `2 loss which is (1−(f(x)−f(x′)))2. The logic behind

the choice of the `2 loss is that it has been shown to be statistically consistent with AUC

44

while the hinge loss is not [35].

A modification that can be made to the work in [113] is the inclusion of a regularization

term Ω(w) with parameter λ. Recall that the conditional expectation for a random variable

ξ(z) is defined by

E[ξ(z)|y = 1] =
1

p

∫∫
ξ(z)Iy=1dρ(z),

where p = Pr(y = 1). By applying the previous definition to 3.2, and including a regulariza-

tion term to avoid overfitting, AUC maximization can then be formulated as

argmin
w

E
[
(1−w>(x− x′))2|y = 1, y′ = −1

]
+
λ

2
‖w‖2

= argmin
w

1

p(1− p)

∫∫
Z×Z

(1−w>(x− x′))2I[y=1]I[y′=−1]dρ(z)dρ(z′) +
λ

2
‖w‖2. (3.3)

It is evident from the formulation in 3.3 that optimizing AUC presents a significant challenge

since the metric is based on two samples of opposing classes. Therefore, it is of interest to

overcome the quadratic nature of the objective function.

3.2 AUC Optimization as a Saddle Point Problem

A novel approach to overcome the quadratic objective function of AUC optimization

is to reformulate AUC optimization as a stochastic saddle point problem (SPP) [70]. First,

we give a definition of a stochastic SPP.

Definition 3.1. A stochastic SPP is generally in the form of

min
u∈Ω1

max
α∈Ω2

{
f(u, α) := E[F (u, α, ξ)]

}
, (3.4)

where Ω1 ⊆ Rd and Ω2 ⊆ Rm are nonempty closed convex sets, ξ is a random vector with

non-empty measurable set Ξ ⊆ Rp, and F : Ω1 × Ω2 × Ξ → R. Here E[F (u, α, ξ)] =∫
Ξ
F (u, α, ξ)dPr(ξ), and function f(u, α) is convex in u ∈ Ω1 and concave in α ∈ Ω2.

The variables u and α are referred to as the primal and the dual variables, respectively.

The following work, based on [113], gives a modified version of the result that includes a `2

regularization term. Before we state the theorem, we first need to define F : Rd×R3×Z → R,

45

for any w ∈ Rd, a, b, α ∈ R and z = (x, y) ∈ Z, by

F (w, a, b, α; z) = (1− p)(w>x− a)2I[y=1] + p(w>x− b)2I[y=−1]

+ 2(1 + α)(pw>xI[y=−1] − (1− p)w>xI[y=1])− p(1− p)α2 +
λ

2
‖w‖2. (3.5)

Equation (3.5) is similar as in the previous work [113] where the inclusion of a regularization

term is the only difference. The main result still holds in a similar manner.

Theorem 3.1. AUC optimization (3.3) is equivalent to

min
w∈Rd

(a,b)∈R2

max
α∈R

{
f(w, a, b, α) :=

∫
Z
F (w, a, b, α; z)dρ(z)

}
. (3.6)

Proof. It is enough to prove the claim that the objective function of (3.3) is equivalent to

1 + min
(a,b)∈R2

max
α∈R

∫
Z

F (w, a, b, α; z)

p(1− p)
dρ(z). (3.7)

As from our initial assumptions, recall that z = (x, y) and z′ = (x′, y′) are samples

independently drawn from an unknown distribution ρ. It is critical to note that the double

integral comes from the multiplication of two single integrals:

E[(1−w>(x− x′))2|y = 1, y′ = −1] +
1

2
‖w‖2

= 1− 2E[w>x|y = 1] + 2E[w>x′|y′ = −1] + (E[w>x|y = 1]− E[w>x′|y′ = −1])2

+ Var[w>x|y = 1]) + Var[w>x′|y′ = −1]) +
1

2
‖w‖2. (3.8)

Observe that

Var[w>x|y = 1] = E[(w>x)2|y = 1]−
(
E[w>x|y = 1]

)2

=
1

p

∫
Z

(w>x)2I[y=1]dρ(z)−
(

1

p

∫
Z

w>xI[y=1]dρ(z)

)2

= min
a∈R

1

p

∫
Z

(w>x− a)2I[y=1]dρ(z)

= min
a∈R

E[(w>x− a)2|y = 1],

46

where the minimization is achieved by

a = E[w>x|y = 1]. (3.9)

Similarly, the same holds true for b:

Var[w>x′|y′ = −1] = min
b

E[(w>x′ − b)2|y′ = −1], (3.10)

where the minimization is obtained when

b = E[wTx|y = −1]. (3.11)

Recognize the fact that

(E[w>x|y = 1]− E[w>x′|y′ = −1])2

= max
α
{−α2 + 2α(E[w>x′|y′ = −1]− E[w>x|y = 1])}. (3.12)

The minimization for α can then be written as:

α = E[wTx|y = −1]− E[wTx|y = 1] = b− a. (3.13)

Combining the above equalities into (3.8) implies that

E
[
(1−w>(x− x′))2|y = 1, y′ = −1

]
+
λ

2
‖w‖2

= 1 + E[(w>x− a)2|y = 1] + E[(w>x− b)2|y = −1]

+ 2(1 + α)
(
E[w>x|y = −1]− E[w>x|y = 1]

)
− α2 +

λ

2
‖w‖2

= 1 + min
(a,b)∈R2

max
α∈R

∫
Z F (w, a, b; z)dρ(z)

p(1− p)
.

This completes the proof of the claim and the theorem.

An important consideration is whether or not the objective function remains convex.

Replacing the indicator function by the least square loss made the objective convex, however,

does this hold true for the stochastic SPP with respect to the primal or dual variables? The

47

answer to this question is proved in the following result.

Proposition 3.2.1. Function f(w, a, b, α) is convex in (w, a, b) ∈ Rd+2 and concave in

α ∈ R.

Proof. For fixed (w, a, b), the concavity of f(w, a, b, α) in α is obvious, since it is a quadratic

function of α. For fixed α and z = (x, y), the Hessian of F (·, ·, ·, α; z) is given by


2(1− p)xx> + λ −2(1− p)x 0

−2(1− p)x> 2(1− p) 0

0 0 0

 I[y=1] +


2pxx> + λ 0 −2px

0 0 0

−2px> 0 2p

 I[y=−1].

It is easy to see that the above matrices are positive semi-definite. Therefore, F (w, a, b, α; z)

is jointly convex with respect to (w, a, b) for any fixed α and z. Notice that the func-

tion f(w, a, b, α) =
∫∫
Z F (w, a, b, α; z)dρ(z). Hence, f(w, a, b, α) is convex with respect to

(w, a, b) for any fixed α. This completes the proof of the proposition.

Lastly, we show that the solution to (3.6) is the same optimizer for the original AUC opti-

mization problem.

Proposition 3.2.2. For any saddle point (w∗, a∗, b∗, α∗) of the SPP formulation (3.6), w∗

is a minimizer of the original AUC optimization problem (3.3).

Proof. Define f̄(w, a, b, α) = 1+
∫
Z F (w,a,b,α;z)dρ(z)

p(1−p) + λ
2
‖w‖2 and let (w∗, a∗, b∗, α∗) be a saddle

point of the problem

min
w∈Rd

(a,b)∈R2

max
α∈R

f̄(w, a, b, α).

Since it does not matter which minimization occurs first (i.e. minimizing with respect to w

and minimizing with respect to (a, b)), this does not affect the result. We can conclude for

every fixed w, (a∗, b∗, α∗) is a saddle point of the sub-problem

min
(a,b)∈R2

max
α∈R

f̄(w, a, b, α).

Furthermore, from the proof for Theorem 3.1 we have

E
[
(1−w>(x− x′))2|y = 1, y′ = −1

]
+
λ

2
‖w‖2 = min

(a,b)∈R2
max
α∈R

f̄(w, a, b, α). (3.14)

48

Therefore,

E
[
(1−w>(x− x′))2|y = 1, y′ = −1

]
+
λ

2
‖w‖2 = f̄(w, a∗, b∗, α∗).

This implies that

min
w

E
[
(1−w>(x− x′))2|y = 1, y′ = −1

]
+
λ

2
‖w‖2 = min

w
f(w, a∗, b∗, α∗). (3.15)

Since w∗ is assumed to be the minimizer of the righthand side of (3.15), w∗ is also a minimizer

of the lefthand side of the equation.

3.3 Algorithm

The objective for AUC maximization as detailed in the previous section is to determine

the saddle point (w∗, a∗, b∗, α∗) in (3.6). Stochastic first-order methods are a very common

approach to obtain such a solution. A key observation of such algorithms (e.g.[51, 70]) is

to use an unbiased stochastic estimator of the true gradient to perform the gradient update.

For each iteration, gradient descent in the primal variable and gradient ascent in the dual

variable are performed to obtain the saddle point.

As from [113], we can use the stochastic SPP formulation (3.6) for AUC optimiza-

tion and develop a regularized stochastic online learning algorithm that only needs to pass

the data once. We will use similar notation as in [113]: let vector v = (w>, a, b)> ∈
Rd+2, and for any w ∈ Rd, a, b, α ∈ R and z = (x, y) ∈ Z, we write f(w, a, b, α) as

f(v, α), and F (w, a, b, α, z) as F (v, α, z). It is important to note that the gradient of the

stochastic SPP problem (3.6) is a (d + 3)-dimensional column vector, specifally g(v, α) =

(∂vf(v, α),−∂αf(v, α)). For any z ∈ Z, its unbiased stochastic estimator is given by

G(v, α, z) = (∂uF (v, α, z),−∂αF (v, α, z)).

Solving the stochastic SPP formulation (3.6) could be done by directly applying the

first-order method in [70], however, from the definition of F in (3.5), this would require

49

knowing the probability p = Pr(y = 1) a priori. Generally, this is unknown. To this end, for

any v> = (w>, a, b) ∈ Rd+2, α ∈ R and z ∈ Z, let

F̂t(v, α, z) = (1− p̂t)(w>x− a)2I[y=1] + p̂t(w
>x− b)2I[y=−1]

+ 2(1 + α)(p̂tw
>xI[y=−1] − (1− p̂t)w>xI[y=1])

− p̂t(1− p̂t)α2 +
λ

2
‖w‖2. (3.16)

where p̂t =

∑t
i=1 I[yi=1]

t
at iteration t. At each iteration t, use the stochastic estimator

Ĝt(v, α, z) = (∂vF̂t(v, α, z),−∂αF̂t(v, α, z)) (3.17)

in place of the inaccessible stochastic estimator G(v, α, z).

For a fair comparison with the algorithms discussed in chapters 4 and 5, we can re-

formulate the bound R in terms of the regularization parameter λ. First, assume κ =

supx∈X ‖x‖ <∞, and recall that ‖w‖ ≤ R. As from before, for the optimal solution w∗, we

have the following:

λ

2
‖w∗‖2 ≤ E

[
(1−w>(x− x′))2|y = 1, y′ = −1

]
+
λ

2
‖w‖2.

Letting w = 0 and recalling that ‖w‖ ≤ R, it is easy to see that R ≤
√

2
λ
.

Now, given an optimal solution (w∗, a∗, b∗) of the stochastic SPP (3.6) for AUC opti-

mization, by (3.9), (3.11) and (3.13) we know that

|a∗| = 1

p
|
∫
Z
〈w∗,x〉I[y=1]dρ(z)| ≤ Rκ,

|b∗| = 1

1− p
|
∫
Z
〈w∗,x′〉I[y′=−1]dρ(z′)| ≤ Rκ,

|α∗| =
∣∣ 1

1− p

∫
Z
〈w∗,x′〉I[y′=−1]dρ(z′)− 1

p

∫
Z
〈w∗,x〉I[y=1]dρ(z)

∣∣ ≤ 2Rκ.

50

Algorithm 18 Regularized Stochastic Online AUC Maximization (regSOLAM)

Input: Step sizes {ηt > 0 : t ∈ N}
Initialize t = 1, v1 ∈ Ω1, α1 ∈ Ω2 and let p̂0 = 0, v̄0 = 0, ᾱ0 = 0 and γ̄0 = 0.
for t = 1 to T do
zt = (xt, yt) and compute p̂t =

(t−1)p̂t−1+I[yt=1]

t

Update vt+1 = PΩ1(vt − γt∂vF̂t(vt, αt, zt))
Update αt+1 = PΩ2(αt + γt∂αF̂t(vt, αt, zt))
Update γ̄t = γ̄t−1 + γt
Update v̄t = 1

γ̄t
(γ̄t−1v̄t−1 + γtvt), and ᾱt = 1

γ̄t
(γ̄t−1ᾱt−1 + γtαt)

end for

Finally, we can restrict (w, a, b) and α to the following bounded domains:

Ω1 =
{

(w, a, b) ∈ Rd+2 : ‖w‖ ≤ R, |a| ≤ Rκ, |b| ≤ Rκ
}
,

Ω2 =
{
α ∈ R : |α| ≤ 2Rκ

}
. (3.18)

The pseudo-code of the online AUC optimization algorithm is described in Algorithm 18,

which we will refer to as regSOLAM. It is important to note that PΩ1(·) and PΩ2(·) denote

the projection to the convex sets Ω1 and Ω2, respectively, and can be easily computed.

3.4 Convergence Analysis

Finally, we will detail the convergence results of the proposed regSOLAM algorithm.

The results for the convergence rate is similar as in [113]. We begin by letting u = (v, α) =

(w, a, b, α). The quality of the approximation solution (v̄t, ᾱt) is given by the duality gap at

iteration t:

εf (v̄t, ᾱt) = max
α∈Ω2

f(v̄t, α)− min
v∈Ω1

f(v, ᾱt). (3.19)

The following theorem gives the measure of the duality gap.

Theorem 3.2. Assume that samples {(x1, y1), (x2, y2), . . . , (xT , yT)} are i.i.d. drawn from

a distribution ρ over X × Y, let Ω1 and Ω2 be given by (3.18) and the step sizes given by

{γt > 0 : t ∈ N}. For sequence {(v̄t, ᾱt) : t ∈ [1, T]} generated by regSOLAM (Algorithm

18), and any 0 < δ < 1, with probability 1− δ, the following holds

εf (v̄T , ᾱT) ≤ Cκ max(R2, 1)

√
ln

4T

δ

(T∑
j=1

γj
)−1
[
1 +

T∑
j=1

γ2
j +

(T∑
j=1

γ2
j

) 1
2 +

T∑
j=1

γj√
j

]
,

51

where Cκ is an absolute constant independent of R and T (see the detailed constant in the

proof).

Let the optimum of (3.6) be f ∗, and by Theorem 3.1, is the same as the optimal value of AUC

optimization (3.3). Using Theorem 3.2, we can state the convergence rate of regSOLAM.

Corollary 3.4.1. Under the same assumptions as in Theorem 3.2, and
{
γj = ζj−

1
2 : j ∈ N

}
with constant ζ > 0, with probability 1− δ, it holds

|f(v̄T , ᾱT)− f ∗| ≤ εf (ūT) = O

 lnT
√

ln
(

4T
δ

)
√
T

 .

Unlike the above convergence rate where a decaying step size was chosen, a similar result

can be obtained using an appropriately chosen constant step size as done in [59].

To prove Theorem 3.2, we first require several lemmas. Many of these results are

standard from convex online learning [120].

Lemma 3.1. For any T ∈ N, let {ξj : j ∈ [1, T]} be a sequence of vectors in Rm, and ũ1 ∈ Ω

where Ω is a convex set. For any t ∈ [1, T] define ũt+1 = PΩ(ũt − ξt). Then, for any u ∈ Ω,

there holds
∑T

t=1(ũt − u)>ξt ≤ ‖ũ1−u‖2
2

+ 1
2

∑T
t=1 ‖ξt‖2.

The next lemma is the Pinelis-Bernstein inequality for martingale difference sequence in a

Hilbert space from [74, Theorem 3.4]

Lemma 3.2. Let {Sk : k ∈ N} be a martingale difference sequence in a Hilbert space.

Suppose that almost surely ‖Sk‖ ≤ B and
∑T

k=1 E[‖Sk‖2|S1, . . . , Sk−1] ≤ σ2
T . Then, for any

0 < δ < 1, there holds, with probability at least 1−δ, sup1≤j≤T

∥∥∥∑j
k=1 Sk

∥∥∥ ≤ 2
(
B
3

+ σT
)

log 2
δ
.

The last lemma states that the approximate stochastic estimator Ĝj(u, z) defined by (3.17),

is close to the unbiased G(u, z).

Lemma 3.3. Let Ω1 and Ω2 be given by (3.18) and denote by Ω = Ω1 × Ω2. For any

t ∈ N, with probability 1− δ, there holds sup
u∈Ω,z∈Z

‖Ĝt(u, z)− G(u, z)‖ ≤ (4Rκ2 + κ + R(λ +

18κ)
(
ln (

2

δ
)/t
) 1

2 .

52

Using the above results, we will now prove the main convergence theorem. It is important

to note that the proof is similar as to the one presented in [113].

Proof of Theorem 3.2. First, using the convexity of f(·, α) and the concavity of f(v, ·),
for any u = (v, α) ∈ Ω1 × Ω2, we have

f(vt, α)− f(v, αt) = (f(vt, αt)− f(v, αt)) + (f(vt, α)− f(vt, αt))

≤ (vt − v)>∂vf(vt, αt)− (αt − α)∂αf(vt, αt)

= (ut − u)>g(ut)

Hence, it holds that

max
α∈Ω2

f(v̄T , α)− min
v∈Ω1

f(v, ᾱT) ≤

(
T∑
t=1

γt

)−1(
max
α∈Ω2

T∑
t=1

γtf(vt, α)− min
v∈Ω1

T∑
t=1

γtf(v, αt)

)

≤

(
T∑
t=1

γt

)−1

max
u∈Ω1×Ω2

T∑
t=1

γt(ut − u)>g(ut) (3.20)

Recall that by definition Ω = Ω1×Ω2. Applying the notation that u = (v, α), we can rewrite

steps 4 and 5 in Algorithm 18 as

ut+1 = (vt+1, αt+1) = PΩ(ut − γtĜt(ut, zt))

Using Lemma 3.1 with ξt = γtĜt(ut, zt), it holds, for any u ∈ Ω, that

T∑
t=1

γt(ut − u)>Ĝt(ut, zt) ≤
‖u1 − u‖2

2
+

1

2

T∑
t=1

γ2
t ‖Ĝt(ut, zt)‖2,

53

which gives

sup
u∈Ω

T∑
t=1

γt(ut − u)>g(ut) ≤ sup
u∈Ω

‖u1 − u‖2

2
+

1

2

T∑
t=1

γ2
t ‖Ĝt(ut, zt)‖2

+ sup
u∈Ω

T∑
t=1

γt(ut − u)>(g(ut)− Ĝt(ut, zt))

≤ sup
u∈Ω

‖u1 − u‖2

2
+

1

2

T∑
t=1

γ2
t ‖Ĝt(ut, zt)‖2

+ sup
u∈Ω

T∑
t=1

γt(ut − u)>(g(ut)−G(ut, zt))

+ sup
u∈Ω

T∑
t=1

γt(ut − u)>(G(ut, zt)− Ĝt(ut, zt)) (3.21)

To complete the proof it is necessary to estimate the four terms on the right hand side of

(3.21). For the first term, it is easy to see that

1

2
sup
u∈Ω
‖u1 − u‖2 ≤ 2 sup

v∈Ω1,α∈Ω2

(‖v‖2 + |α|2) ≤ 2 sup
u∈Ω
‖u‖2 ≤ 2R2(1 + 6κ2). (3.22)

For the second term of (3.21), recall that supx∈X ‖x‖ ≤ κ and ut = (wt, at, bt, αt) ∈ Ω ={
(w, a, b, α) : ‖w‖ ≤ R, |a| ≤ κR, |b| ≤ κR, |α| ≤ 2κR

}
. Using this with the definition of

Ĝt(ut, zt) given by (3.17), one can obtain that ‖Ĝt(ut, zt)‖ ≤ ‖∂wF̂t(ut, zt)‖+ |∂aF̂t(ut, zt)|+
|∂bF̂t(ut, zt)| + |∂αF̂t(ut, zt)| ≤ 4Rκ2 + κ + R(λ + 5κ). Therefore, we can bound the second

term as follows:

1

2

T∑
t=1

γ2
t ‖Ĝt(ut, zt)‖2 ≤ (4Rκ2 + κ+R(λ+ 5κ))2

(
T∑
t=1

γ2
t

)
. (3.23)

It is important to note that this bound is different from the proof in [113] because of the

inclusion of the regularization term. Bounding the third term on the right hand side of

54

(3.21) can be done by

sup
u∈Ω

T∑
t=1

γt(ut − u)>(g(ut)−G(ut, zt)) ≤ sup
u∈Ω

[
T∑
t=1

γt(ũt − u)>(g(ut)−G(ut, zt))]

+
T∑
t=1

γt(ut − ũt)>(g(ut)−G(ut, zt)),

where ũ1 = 0 ∈ Ω and ũt+1 = PΩ(ũt − γt(g(ut)−G(ut, zt))) for any t ∈ [1, T]. Using Lemma

3.1 with ξt = γt(g(ut)−G(ut, zt)) gives that

sup
u∈Ω

T∑
t=1

γt(ũt − u)>(g(ut)−G(ut, zt))

≤ sup
u∈Ω

‖u‖2

2
+

1

2

T∑
t=1

γ2
t ‖g(ut)−G(ut, zt)‖2

≤ 1

2
R2(1 + 6κ2) + (4Rκ2 + κ+R(λ+ 5κ))2

T∑
t=1

γ2
t . (3.24)

In the above, we used that ‖G(ut, zt)‖ and ‖g(ut)‖ are uniformly bounded by 4Rκ + κ +

R(λ + 5κ). It is important to note that ut and ũt are only dependent on {z1, z2, . . . , zt−1}
and {St = γt(ut − ũt)>(g(ut)− G(ut, zt)) : t = 1, . . . , t} is a martingale difference sequence.

Therefore, we have that

E[‖St‖2|z1, . . . , zt−1] = γ2
t

∫∫
Z

((ut − ũt)>(g(ut)−G(ut, z)))
2dρ(z)

≤ γ2
t sup
u∈Ω,z∈Z

[‖ut − ũt‖2‖g(ut)−G(ut, zt)‖2]

≤ γ2
t [R
√

1 + 6κ2(4Rκ2 + κ+R(λ+ 5κ))]2.

Implementing Lemma 3.2 with σ2
T = [R

√
1 + 6κ2(4Rκ2 + κ + R(λ + 5κ))]2

∑T
t=1 γ

2
t , B =

supTt=1 γt|(ut − ũt)>(g(ut)−G(ut, zt))| ≤ σT gives, with probability 1− δ
2
, that

T∑
t=1

γt(ut − ũt)>(g(ut)−G(ut, zt))

≤ 8R
√

1 + 6κ2(4Rκ2 + κ+R(λ+ 5κ))

3

√√√√ T∑
t=1

γ2
t . (3.25)

55

Putting together (3.24) with (3.25) implies, with probability 1− δ
2
,

sup
u∈Ω

T∑
t=1

γt(ut − u)>(g(ut)−G(ut, zt))

≤ R2(1 + 6κ2)

2
+ (4Rκ2 + κ+R(λ+ 5κ))2

T∑
t=1

γ2
t

+
8R
√

1 + 6κ2(4Rκ2 + κ+R(λ+ 5κ))

3

(T∑
t=1

γ2
t

)1/2
. (3.26)

Applying Lemma 3.3, for any t ∈ [1, T], gives

sup
u∈Ω,z∈Z

‖Ĝt(u, z)−G(u, z)‖ ≤ (4Rκ2 + κ+R(λ+ 18κ))

√
ln (

4T

δ
)/t.

Finally, the fourth term on the righthand side of (3.21) can be estimated with probability

1− δ
2
:

sup
u∈Ω

T∑
t=1

γt(ut − u)>(G(ut, zt)− Ĝt(ut, zt))

≤ 2 sup
uΩ
‖u‖
(T∑
t=1

γt sup
u∈Ω,z∈Z

‖Ĝt(u, z)−G(u, z)‖
)

≤ 4R(4Rκ2 + κ+R(λ+ 18κ))
√

6κ2 + 1
T∑
t=1

γt√
t
. (3.27)

Applying the estimations (3.22), (3.23), (3.26), (3.27) and (3.21) to (3.20) implies that

εf (ūT) ≤ Cκ max(R2, 1)

√
ln

4T

δ

(T∑
t=1

γt
)−1
[
1 +

T∑
t=1

γ2
t +

(T∑
t=1

γ2
t

) 1
2 +

T∑
t=1

γt√
t

]
,

where Cκ = 5
2
(1 + 6κ2) + 2(4κ2 + 6κ+ λ)2 + (80

3
κ2 + 88κ+ 20

3
λ)
√

1 + 6κ2 2

3.5 Experiments

In this section, we will validate the theoretical results of the previous section by ex-

amining the experimental evaluations of regSOLAM with existing state-of-the-art learning

algorithms for AUC optimization. Specifically, these experiments will demonstrate that reg-

56

Datasets] Inst] Feat Datasets] Inst] Feat
diabetes 768 8 fourclass 862 2
german 1,000 24 splice 3,175 60
usps 9,298 256 a9a 32,561 123
mnist 60,000 780 acoustic 78,823 50
ijcnn1 141,691 22 covtype 581,012 54
sector 9,619 55,197 news20 15,935 62,061

Table 3.1: Basic information about the benchmark datasets.

SOLAM has a lower computational complexity while maintaining a similar performance in

comparison to existing methods.

We conduct comprehensive studies by comparing the proposed algorithm with other

AUC optimization algorithms for both online and batch scenarios. The algorithms considered

in our experiments include:

• regSOLAM: The regularized online projected gradient descent algorithm for AUC

maximization.

• OPAUC: The one-pass AUC optimization algorithm with square loss function [34].

• OAMseq: The OAM algorithm with reservoir sampling and sequential updating

method [118].

• OAMgra: The OAM algorithm with reservoir sampling and online gradient updating

method [118].

• Online Uni-Exp: Online learning algorithm which optimizes the (weighted) univari-

ate exponential loss [48].

• B-SVM-OR: A batch learning algorithm which optimizes the pairwise hinge loss [42].

• B-LS-SVM: A batch learning algorithm which optimizes the pairwise square loss.

To examine the performance of the proposed regSOLAM algorithm in comparison

to state-of-the-art methods, we conduct experiments on 12 benchmark datasets. Table 3.1

shows the details of each of the datasets. All of these datasets are available for download from

the LIBSVM and UCI machine learning repository. Note that some of the datasets (mnist,

covtype, etc.) are multi-class, which we converted to binary data by randomly partitioning

the data into two groups, where each group includes the same number of classes.

57

Datasets regSOLAM OPAUC OAMseq OAMgra B-SVM-OR B-LS-SVM
diabetes .8140±.0330 .8309±.0350 .8264±.0367 .8262±.0338 .8326±.0328 .8325±.0329
fourclass .8222±.0276 .8310±.0251 .8306±.0247 .8295±.0251 .8305±.0311 .8309±.0309
german .7830±.0247 .7978±.0347 .7747±.0411 .7723±.0358 .7935±.0348 .7994±.0343
splice .9237±.0090 .9232±.0099 .8594±.0194 .8864±.0166 .9239±.0089 .9245±.0092
usps .9848±.0021 .9620±.0040 .9310±.0159 .9348±.0122 .9630±.0047 .9634±.0045
a9a .8970±.0048 .9002±.0047 .8420±.0174 .8571±.0173 .9009±.0036 .8982±.0028
mnist .9599±.0014 .9242±.0021 .8615±.0087 .8643±.0112 .9340±.0020 .9336±.0025
acoustic .8114±.0035 .8192±.0032 .7113±.0590 .7711±.0217 .8262±.0032 .8210±.0033
ijcnn1 .9108±.0030 .9269±.0021 .9209±.0079 .9100±.0092 .9337±.0024 .9320±.0037
covtype .9332±.0020 .8244±.0014 .7361±.0317 .7403±.0289 .8248±.0013 .8222±.0014
sector .9734±.0036 .9292±.0081 .9163±.0087 .9043±.0100 - -
news20 .9399±.0038 .8871±.0083 .8543±.0099 .8346±.0094 - -

Table 3.2: Comparison of the testing AUC values (mean±std.) on the evaluated

datasets. To accelerate the experiments, the value for sector was determined after five

runs instead of 25 for the other data sets. The performances of OPAUC, OAMseq,

OAMgra, online Uni-Exp, B-SVM-OR and B-LS-SVM were taken from [34].

For the experiments, the features were normalized by taking xi ← xi−mean(xi)
‖xi‖ for the

large datasets and xi ← xi
‖xi‖ for the small datasets (diabetes, fourclass, and german). For

each dataset, the data is randomly partitioned into 5 folds (4 are for training and 1 is for

testing). We generate this partition for each dataset 5 times. This results in 25 runs for each

dataset for which we use to calculate the average AUC score and standard deviation. To

determine the proper parameter for each dataset, we conduct 5-fold cross validation on the

training sets to determine the learning rate ζ ∈ [1 : 9 : 100] and the regularization parameter

λ ∈ 10[−5:5] by a grid search. The buffer size for OAMseq and OAMgra was 100 as suggested

[118]. All experiments for regSOLAM were conducted with MATLAB.

A summary of the classification performances on the testing dataset of all methods is

given in Table 3.2. These results give evidence that regSOLAM achieves a similar perfor-

mance as other state-of-the-art online and offline methods based on AUC maximization. In

some cases, regSOLAM performs better than some of the other online learning algorithms.

There is a significant improvement in the text classification dataset sector and covtype. The

difference in performance of regSOLAM could be due to the fact that since the data is

randomly partitioned into two classes, the value of p could be resulting in a higher AUC

score.

However, the main advantage of regSOLAM is the running time performance while

maintaining low per iteration costs. The theoretical convergence rate of O(1/
√
T) is demon-

strated in Figure 3.1. The theory tells us that regSOLAM should have a similar rate of

58

(a) usps (b) sector

Figure 3.1: AUC vs. Time curves of regSOLAM against other state of the art

learning algorithms.

convergence as the other existing algorithms and the convergence plots confirm that assump-

tion.

59

Chapter 4

Stochastic Proximal AUC Maximization

The previous chapter established the saddle point formulation for AUC optimization, how-

ever, we can exploit the primal and dual variables to express the formulation in Chapter 3

to purely be a minimization problem. First, we begin with the AUC formulation from the

previous chapter:

min
w,a,b

max
α∈R

{
E[F (w, a, b, α; z)] + Ω(w)

}
, (4.1)

where the expectation is with respect to z = (x, y) and F (w, a, b, α; z) is given as before. The

algorithm regSOLAM determined the saddle point by using gradient decent on the primal

variables and gradient ascent on the dual variable. An alternative, but novel formulation

can be derived for AUC maximization by observing the definitions of the variables a, b, and

α. Observe the fact that

Var[w>x|y = 1] = min
a

E[(w>x− a)2|y = 1], (4.2)

and

Var[w>x′|y′ = −1] = min
b

E[(w>x′ − b)2|y′ = −1]. (4.3)

In addition,

(E[w>x|y = 1]− E[w>x′|y′ = −1])2 = max
α
{−α2

+ 2α(E[w>x′|y′ = −1]− E[w>x|y = 1])}. (4.4)

It is easy to see that the optima for (4.2), (4.3), and (4.4) are respectively achieved at

a(w) = w>E[x|y = 1], b(w) = w>E[x|y = −1], (4.5)

α(w) = w>(E[x|y′ = −1]− E[x|y = 1]). (4.6)

60

Algorithm 19 Stochastic Forward-Backward Splitting

Input: Step sizes {ηt > 0 : t ∈ N}
Initialize w1 ∈ Rd.
for t = 1 to T do

Receive sample zt = (xt, yt)
ŵt+1 = wt − ηt∇`
wt+1 = proxηtŵt

end for

This allows us to reformulate AUC optimization to be purely just a minimization problem

with respect to w:

min
w

{
E[F (w, a(w), b(w), α(w); z)] + Ω(w)

}
, (4.7)

where a, b, and α are updated by (4.5) and (4.6). We can now apply a different approach to

solving this problem that is more novel than the method discussed in chapter 3.

4.1 Proximal Methods and Algorithm Formulation

The general structure of (4.7) is a common problem in machine learning that takes the

following form:

min
w

`(w) + Ω(w), (4.8)

where ` is a loss function while Ω represents some regularizer. A solution to this problem

can be obtained by solving the problem in two steps: first, determine a solution for w

by minimizing `, then find a solution that minimizes Ω(w) that is close to the solution

obtained in the first step. This idea is more precisely known as a “forward-backward”

splitting algorithm [86]. The first step is to simply perform gradient descent on `. The

critical step is determining a solution that minimizes Ω(w) while also minimizing `(w). By

design, the proximal operator finds a solution that minimizes Ω(w) while the solution is

restricted to being close to a solution obtained from gradient descent. The proximal step is

given by:

proxηtΩ(u) = arg min

{
1

2
‖u−w‖2

2 + ηΩ(w)

}
, (4.9)

where η is a chosen step size. The motivating algorithm is summarized in Algorithm 19.

Proximal algorithms are an entire class of methods that are used to solve convex

optimization problems. Like Newton’s method, proximal algorithms are a standard tool

61

Figure 4.1: Interpretation of a proximal operator at selected points.

for non-smooth problems. They have been applied in many areas and are of high interest

for high-dimensional data sets [115]. The key idea behind this operator can be derived from

the optimality condition such that

0 ∈ ∇`(w) + ∂Ω(w) ⇐⇒ w − η∇`(w) ∈ w + η∂Ω(w)

⇐⇒ w = P η
f (w − η∇`(w)). (4.10)

Another way of interpreting proximal operators is to consider when Ω(w) is the indicator

function for a convex set W , i.e. Ω(w) = ∞ when w /∈ W and 0 otherwise. Therefore, the

proximal operator can simply be interpreted as the Euclidean projection onto W :

ΠX(y) = argmin
w∈W

‖w − y‖.

Proximal operators can be viewed as just a generalization of projections. However, a critical

reason as to why proximal operators are used is because of their fixed point property: w∗

is a fixed point of the proximal operator (i.e. proxΩ(w∗) = w∗) if and only if w∗ minimizes

Ω(w). Therefore, solving a minimization problem is equivalent to finding the fixed point of

the proximal operator.

We can apply the previous ideas and motivations to solve problem (4.7) by conducting

stochastic gradient descent only on w, while a, b, and α are then updated using equations

(4.5) and (4.6), rather than doing stochastic gradient updates. Specifically, for each new

62

Algorithm 20 Stochastic Proximal AUC Maximization (SPAM)

Input: Step sizes {ηt > 0 : t ∈ N}
Initialize w1 ∈ Rd.
for t = 1 to T do

Receive sample zt = (xt, yt)
Compute a(wt), b(wt), and α(wt) according to (4.5) and (4.6).
ŵt+1 = wt − ηt∂1F (wt, a(wt), b(wt), α(wt); zt)
wt+1 = proxηtΩ(ŵt+1)

end for

data zt, we update w by

wt+1 = wt − ηt∂1F (wt, a(wt), b(wt), α(wt); zt), (4.11)

where ∂1F denotes the gradient with respect to the first argument and ηt denotes the step

size. The proximal map for a convex function Ω : Rd → R is defined as

proxηtΩ(u) = arg min{1

2
‖u−w‖2 + ηtΩ(w)}. (4.12)

The novelty of this approach is that Ω(·) could be a non-smooth penalty function such as `1.

The proposed algorithm is similar to forward-backward splitting [24, 86] with the pseudo-code

summarized in Algorithm 20. Our algorithm differs significantly since the forward-backward

methods focused on accuracy. The storage and per-iteration cost is one datum, however,

the algorithm has an assumption that the class means are known, i.e. E(x|y = 1) and

E(x|y = −1) as well as the probability of class 1. This assumption can be alleviated by

using a portion of the training data to estimate the probability of class 1 as well as the class

means can be estimated by sample means.

By reformulating AUC in such a way, it is expected that SPAM will have a faster

convergence rate than regSOLAM. To illustrate why this is true, let f(w) = p(1− p)E
[
(1−

w>(x − x′))2
∣∣y = 1, y′ = −1

]
which is the same as mina,b maxα E[F (w, a, b, α; z)]. The

following critical lemma determines why this can be done.

Lemma 4.1. Let wt be given by SPAM described in Algorithm 20. Then, we have that

∂f(wt) = Ezt [∂1F (wt, a(wt), b(wt), α(wt); zt)],

63

where Ezt [·] denotes the expectation with respect to zt = (xt, yt).

Proof. First, the notation ∂iF denotes the partial derivative of F with respect to the ith

argument. The application of the chain rule gives

∂wf(wt) = ∂wEzt [F (wt, a(wt), b(wt), α(wt); zt)]

= Ezt
[
∂wF (wt, a(wt), b(wt), α(wt); zt)

]
= Ezt

[
∂1F (wt, a(wt), b(wt), α(wt); zt)

]
+ Ezt

[
∂2F (wt, a(wt), b(wt), α(w); zt) ∂wa(wt)

]
+ Ezt

[
∂3F (wt, a(wt), b(wt), α(wt); zt) ∂wb(wt)

]
+ Ezt

[
∂4F (wt, a(wt), b(wt), α(wt); zt)∂wα(wt)

]
. (4.13)

The interchanging between differentiation and integration in the second inequality follows

from Leibniz’s Integral rule since F (wt, a(wt), b(wt), α(w); zt) is quadratic and the input

space X is a bounded domain. For the last part, we have that

Ezt
[
∂2F (wt,a(wt), b(wt), α(w); zt) ∂wa(wt)

]
= ∂2Ezt

[
F (wt, a(wt), b(wt), α(w); zt)

]
[E(x|y = 1)], (4.14)

since wt depends on {z1, z2, . . . , zt−1}. To prove the lemma, it just requires the use of the

first order optimality condition applied on a, b, and α. For

min
a,b

max
α

Ezt [F (wt, a, b, α; zt)],

a(wt) is the minimizer which gives that ∂2Ezt
[
F (wt, a(wt), b, α; zt)

]
= 0. It then follows

that:

∂2Ezt
[
F (wt, a(wt), b(wt),α(wt); zt)

]
= Ezt

[
∂2F (wt, a(wt), b(wt), α(w); zt) ∂wa(wt)

]
= 0.

A similar argument can be made for the third and fourth terms on the righthand side of

(4.13). This completes the proof of the lemma.

64

The significance of the above lemma is that on {z1, . . . , zt−1},

∂1F (wt, a(wt), b(wt), α(wt); zt)

is an unbiased estimator of the true gradient ∂wf(wt). This strongly indicates that SPAM

will have a faster convergence rate than regSOLAM in Chapter 3. Therefore, SPAM should

have a convergence rate similar to SGD methods for a strongly convex objective function

[82, 91]. Using this intuition, we will prove the convergence rate in the next section.

4.2 Convergence Analysis

Before we present our convergence results, we first discuss some critical differences in

assumptions about SPAM and the proofs in [24, 86]. The convergence analysis of those

methods critically depends on that the iterates are uniformly bounded. The variance of

the stochastic gradient is bounded as well, however, verifying this is difficult in practice.

The techniques used here do not use any of these assumptions. Additionally, a primal-dual

method for saddle point problems that can achieve a convergence rate of O(1/T) could be

applied to AUC maximization, however, the saddle point construction differs from (4.7) [74].

Also, the method assumes strong convexity on both the primal and dual variables unlike the

work presented in this chapter.

Before we introduce the convergence rate of SPAM, first we need to define some impor-

tant notations and assumptions. First, we will let f(w) = p(1− p)E
[
(1−w>(x− x′))2

∣∣y =

1, y′ = −1
]
. The solution of (4.7) will be given by w∗. Next, we will define the following

constant for notational simplicity:

E[‖G(w∗; z)− ∂f(w∗)‖2] = σ2
∗, (4.15)

where G(w; z) = ∂1F (w, a(w), b(w), α(w); z). We will base the convergence results on the

following assumptions:

Assumption 4.1. Assume that Ω(·) is β-strongly convex.

Assumption 4.2. There exists an M > 0 such that ‖x‖ ≤M for any x ∈ X .

Finally, the convergence results are based on some constants. We denote them as

65

follows: Cβ,M := β
128M4 , C̃β,M = β

(1+ β2

128M4)2
, and C̄β,M = C̃β,MCβ,M = 128M4β2

(128M4+β2)2
. As from the

previous chapter, we use the conventional notation that for any T ∈ N, NT = {1, . . . , T}.. To

prove the convergence rates of SPAM, we require the following critical lemma that establishes

how ‖wt −w∗‖ changes with t.

Lemma 4.2. Under Assumptions 4.1 and 4.2, let {wt : t ∈ NT+1} be generated by SPAM.

Then, the following statements hold true.

(i) For any t ∈ N there holds

E[‖wt+1 −w∗‖2] ≤ 1 + 128M4η2
t

(1 + ηtβ)2
E[‖wt −w∗‖2] + 2σ2

∗η
2
t . (4.16)

(ii) If, furthermore, 0 < ηt ≤ Cβ,M :=
β

128M4
for any t ∈ NT , then we have , for any t ∈ NT ,

E[‖wt+1 −w∗‖2] ≤
(
1− C̃β,M ηt

)
E[‖wt −w∗‖2] + 2σ2

∗η
2
t . (4.17)

Proof. Recall that we previously stated that w∗ is the solution of (4.7). Now using the first

order optimality conditions and (4.10), we have, for any ηt > 0,

w∗ = proxηtΩ(w∗ − ηt∂f(w∗)).

Applying the definition of wt+1 in Algorithm 20 as the above oberservation gives that

‖wt+1 −w∗‖2 = ‖proxηtΩ(ŵt+1)− proxηtΩ(w∗ − ηt∂f(w∗)‖2. (4.18)

By Assumption 4.1, ηtΩ(w) is ηtβ-strongly convex and furthermore, by Proposition 23.11 in

[2], proxηtΩ(·) is (1 + ηtβ)-cocoercive, i.e., for any u and w, there holds 〈u−w, proxηtΩ(u)−
proxηtΩ(w)〉 ≥ (1+ηtβ)‖proxηtΩ(u)−proxηtΩ(w)‖2.Applying the Cauchy-Schwartz inequality

yields that

‖proxηtΩ(u)− proxηtΩ(w)‖ ≤ 1

1 + ηtβ
‖u−w‖.

66

Substituting this back into (4.18), we obtain

‖wt+1 −w∗‖2 = ‖proxηtΩ(ŵt+1)− proxηtΩ(w∗ − ηt∂f(w∗)‖2

≤ 1

(1 + ηtβ)2
‖ŵt+1 − (w∗ − ηt∂f(w∗))‖2

=
1

(1 + ηtβ)2
‖(wt −w∗)− ηt(G(wt, zt)− ∂f(w∗))‖2. (4.19)

Recall that the last equality uses the notation

G(wt; zt) = ∂1F (wt, a(wt), b(wt), α(wt); zt).

The expectation of both sides of (4.19) and expanding out the righthand side yields

E[‖wt+1 −w∗‖2] ≤ 1

(1 + ηtβ)2

(
E[‖wt −w∗‖2]

− 2ηtE[〈wt −w∗, G(wt; zt)− ∂f(w∗)〉]

+ η2
tE[‖G(wt; zt)− ∂f(w∗)‖2

)
. (4.20)

The first term in on the right hand side of (4.20) gives the desired term. It now suffices to

bound the remaining terms. To bound the middle term, we can apply Lemma 4.1 to obtain:

E[〈wt −w∗, G(wt; zt)− ∂f(w∗)〉] = E[〈wt −w∗,Ezt [G(wt; zt)]− ∂f(w∗)〉]

= E[〈wt −w∗, ∂f(wt)− ∂f(w∗)〉] ≥ 0, (4.21)

where the last inequality follows from the convexity of f . To bound the last term of (4.20),

we can do the following:

E[‖G(wt; zt)− ∂f(w∗)‖2] ≤ 2E[‖G(wt; zt)−G(w∗; zt)‖2] + 2E[‖G(w∗; zt)− ∂f(w∗)‖2].

A critical observation is that G is a linear function of wt. Since by Assumption 4.2 that

67

‖xt‖ ≤M , we have

‖G(wt; zt)−G(w∗; zt)‖ ≤ 4M2(1− p)‖wt −w∗‖I[yt=1]

+ 4M2p‖wt −w∗‖I[yt=−1]

+ 4M2|p− I[yt=1]|‖wt −w∗‖

≤ 8M2‖wt −w∗‖. (4.22)

Even more so, from (4.15), we have E[‖G(w∗; zt)−∂f(w∗)‖2] = Ezt [‖G(w∗; zt)−∂f(w∗)‖2] =

σ2
∗. Therefore,

E[‖G(wt; zt)− ∂f(w∗)‖2] ≤ 2(8M2)2E[‖wt −w∗‖2] + 2σ2
∗. (4.23)

To finish part (i) of the lemma, we need to just combine together (4.20), (4.21) and (4.23):

E[‖wt+1 −w∗‖2] ≤ 1

(1 + ηtβ)2

(
E[‖wt −w∗‖2]

+ 2(8M2)2η2
tE[‖wt −w∗‖2] + 2σ2

∗η
2
t

)
≤ 1 + 128M4η2

t

(1 + ηtβ)2
E[‖wt −w∗‖2] + 2σ2

∗η
2
t . (4.24)

This finishes part (i) of the lemma.

To prove the second part of the lemma, the coefficient in (4.24) can be reformulated as

1 + 128M4η2
t

(1 + ηtβ)2
= 1−

(
1− 1 + 128M4η2

t

(1 + ηtβ)2

)
= 1− [2β + β2ηt − 128M4ηt]ηt

(1 + ηtβ)2
. (4.25)

Applying the hypothesis in (ii) of the lemma that ηt ≤
β

128M4
yields

[2β + β2ηt − 128M4ηt]

(1 + ηtβ)2
ηt ≥

β(
1 + β2

128M4

)2ηt. (4.26)

Even more so, observe that β
128M4 ≤

(
1+ β2

128M4

)2
β

. This implies the assumption ηt ≤ β
128M4

guarantees that 1 − β(
1+ β2

128M4

)2ηt ≥ 0. To complete the proof, combine together (4.25) and

(4.26) to obtain the desired result. This completes the proof of the lemma.

68

Before we state the convergence results, the following lemma will be helpful in the proofs

[95].

Lemma 4.3. For any 0 < ν ≤ 1, 0 < α < 1, t < T , and 0 < θ ≤ 1, the following estimations

hold true.

(i)
∑T

j=t+1 j
−α ≥ 1

1−α [(T + 1)1−α − (t+ 1)1−α],

(ii)
∑T−1

t=1
1
t2α

exp
{
− ν

∑T
j=t+1 j

−α
}
≤ 18

νTα
+ 9T 1−α

(1−α)21−α
exp{−ν(1−2α−1)

1−α (T + 1)1−α},

(iii) e−cx ≤
(
b
ce

)b
x−b for x > 0, c > 0 and b > 0.

With the above lemma, we can present and prove the convergence results.

An important observation in Lemma 4.2 is that there are no assumptions about the

step size. By including an additional assumption on ηt, SPAM obtains different rates of

convergence. The first is stated and proved below.

Theorem 4.1. Under Assumptions 4.1 and 4.2, and choosing step sizes with some θ ∈ (0, 1)

in the form of
{
ηt =

Cβ,M
tθ

: t ∈ N
}

, the algorithm SPAM achieves the following:

E[‖wT+1 −w∗‖2] ≤
[

exp
(C̄β,M

1− θ

)(θ

C̄β,Me

) θ
1−θE[‖w1 −w∗‖2]

+ 2σ2
∗C

2
β,M

(9

(1− θ)21−θ

(1

C̄β,M(1− 2θ−1)e

) 1
1−θ

+
18

C̄β,M
+ 1
)]
T−θ.

Proof. For notational simplicity, let rt = E[‖wt − w∗‖2]. The choice of the step sizes ηt =
Cβ,M
tθ

satisfies the hypothesis in Lemma 4.2, i.e. ηt ≤ Cβ,M . Recall the previously stated

constants Cβ,M = β
128M4 , C̃β,M = β

(1+ β2

128M4)2
, and C̄β,M = C̃β,MCβ,M which guarantees that

1− C̃β,Mηt ≥ 1− C̃β,MCβ,M = 1− C̄β,M ≥ 0 for any t ∈ NT . From (4.17), after T iterations,

it is should be clear that

rT+1 ≤ r1

T∏
k=1

(
1− C̃β,Mηk

)
+ 2σ2

∗

T−1∑
k=1

T∏
i=k+1

(
1− C̃β,M ηi

)
η2
k + 2σ2

∗η
2
T . (4.27)

It now suffices to bound the above two terms. The first term can be bounded by the fact

69

that 1− x ≤ exp(−x) for all x ∈ R. This yields that

r1

T∏
k=1

(
1− C̃β,Mηk

)
= r1

T∏
k=1

(
1− C̃β,MCβ,M/kθ

)
≤ r1 exp

(
− C̄β,M

T∑
k=1

1

kθ

)
, (4.28)

where C̄β,M = C̃β,MCβ,M =
128M4β2

(128M4 + β2)2
. Using part (i) in Lemma 4.3 gives that

r1 exp
(
− C̄β,M

T∑
k=1

1

kθ

)
≤ r1 exp

(
C̄β,M
1− θ

[
1− (T + 1)1−θ])

= r1 exp
(C̄β,M

1− θ

)
exp

(
− C̄β,M

1− θ
(T + 1)1−θ

)
.

Furthermore, we can apply part (iii) in Lemma 4.3. Note that b = θ
1−θ , x = (T + 1)1−θand

c =
C̄β,M
1−θ . This gives that

exp

(
− C̄β,M

1− θ
(T + 1)1−θ

)
≤
(

θ

C̄β,Me

) θ
1−θ

(T + 1)−θ.

Combining the above two inequalities back into (4.28), we have

r1

T∏
k=1

(
1− C̃β,Mηk

)
≤ r1 exp

(C̄β,M
1− θ

)(θ

C̄β,Me

) θ
1−θ
T−θ. (4.29)

We can proceed in a similar manner to bound the second term on the right hand side of

(4.27):

T−1∑
k=1

T∏
i=k+1

(
1− C̃β,Mηi

)
η2
k = C2

β,M

T−1∑
k=1

1

k2θ

T∏
i=k+1

(
1− C̄β,M

iθ

)

≤ C2
β,M

T−1∑
k=1

1

k2θ
exp

(
− C̄β,M

T∑
i=k+1

1

iθ

)
. (4.30)

70

Applying Lemma 4.3 (ii) with ν = C̄β,M and α = θ gives that the above is bounded by

T−1∑
k=1

1

k2θ
exp

(
− C̄β,M

T∑
i=k+1

1

iθ

)
≤ 9T 1−θ

(1− θ)(21−θ)
exp

(
− C̄β,M(1− 2θ−1)

1− θ
(T + 1)1−θ

)
+

18

C̄β,MT θ
. (4.31)

We can apply Lemma 4.3 (iii) with b = 1
1−θ , x = (T + 1)1−θ and c =

C̄β,M (1−2θ−1)

1−θ to (4.31)

yields that

exp
(
− C̄β,M(1− 2θ−1)

1− θ
(T + 1)1−θ

)
≤
(1

C̄β,M(1− 2θ−1)e

) 1
1−θ

(T + 1)−1. (4.32)

Substituting (4.31) and (4.32) back into (4.30), we have

2σ2
∗

T−1∑
k=1

T∏
i=k+1

(
1− C̃β,M ηi

)
η2
k ≤ 2σ2

∗C
2
β,M

[9

(1− θ)21−θ

(1

C̄β,M(1− 2θ−1)e

) 1
1−θ

+
18

C̄β,M

]
T−θ. (4.33)

The last term on the righthand side of (4.27) can be bounded by: 2σ2
∗η

2
T ≤ 2σ2

∗C
2
β,MT

−θ.

The combination of (4.29) and (4.33), gives the desired result.

The theorem above shows that with polynomial decaying step sizes in the form of

ηt = O(t−θ) for θ ∈ (0, 1), SPAM achieves the convergence rate of O(T−θ). We can improve

the above result when θ = 1.

Theorem 4.2. Under the Assumptions of 4.1 and 4.2, and choosing step sizes {ηt =

[C̃β,M(t+ 1)]−1 : t ∈ N}, the algorithm SPAM achieves the following:

E[‖wT+1 −w∗‖2] ≤
(
t0E[‖wt0 −w∗‖2]

) 1

T
+

4σ2
∗

C̃2
β,M

log T

T
.

where t0 = max
(

2,
⌈
1 + (128M4+β2)2

128M4β2

⌉)
.

Proof. The condition that t ≥ t0 is imposed so that the assumption in part (ii) of Lemma 4.2

that ηt =
[
C̃β,M(t+ 1)

]−1

≤ Cβ,M is guaranteed. As from before, letting rt = E[‖wt−w∗‖2]

71

we have

rt+1 ≤
(

1− C̃β,M ηt

)
rt + 2σ2

∗η
2
t . (4.34)

Then, this gives

rT+1 ≤ rt0

T∏
k=t0

(
1− C̃β,Mηk

)
+ 2σ2

∗η
2
T + 2σ2

∗

T−1∑
k=t0

T∏
i=k+1

(
1− C̃β,Mηi

)
η2
k. (4.35)

It now suffices to bound the above two terms. We can estimate the first term as follows:

rt0

T∏
k=t0

(1− C̃β,Mηk) = rt0

T∏
k=t0

k

k + 1
=

t0rt0
T + 1

≤ t0rt0
T

.

The second term of (4.35) can be bounded as 2σ2
∗ηT = 2σ2

∗
C̃2
β,M (T+1)2

≤ 2σ2
∗

C̃2
β,MT

. Finally, to bound

the third term, we can do the following:

T−1∑
k=t0

T∏
i=k+1

(1− C̃β,Mηi)η2
k = C̃−2

β,M

T−1∑
k=t0

T−1∏
i=k+1

(
1− 1

i+ 1

) 1

(k + 1)2

= C̃−2
β,M

1

T

T−1∑
k=t0

1

k + 1

≤ C̃−2
β,M

log(T − 1)− log t0
T

≤ C̃−2
β,M

log T

T
.

Combining all the above estimations gives the desired result.

The theorem above shows that SPAM can achieve a convergence of O(1/T) up to a

logarithmic term. This matches the optimal rate of standard stochastic gradient descent

[50, 83, 93]. However, it is important to consider a bound on the term E[‖wt0 −w∗‖2]. For

ηt = [C̃β,M(t+ 1)]−1 from part (i) of Lemma 4.2, we have, for any t ∈ N, we can estimate it

as follows:

E[‖wt+1 −w∗‖2] ≤ 1 + 128M4η2
t

(1 + ηtβ)2
E[‖wt −w∗‖2] + 2σ2

∗η
2
t

≤ (1 + 128M4η2
t)E[‖wt −w∗‖2] + 2σ2

∗η
2
t .

72

Data Name # Inst # Feat Data Name # Inst # Feat

1 diabetes 768 8 7 mnist 60,000 780
2 fourclass 862 2 8 acoustic 78,823 50
3 german 1000 24 9 ijcnn1 141,691 22
4 splice 3175 60 10 covtype 581,012 54
5 usps 9,298 256 11 sector 9,619 55,197
6 a9a 32,561 123 12 news20 15,935 62,061

Table 4.1: Basic information about the datasets.

Therefore,

E[‖wt0 −w∗‖2] ≤
t0−1∏
k=1

(1 + 128M4η2
k) + 2σ2

∗

t0−1∑
k=1

t0−1∏
j=k

(1 + 128M4η2
j)η

2
k

≤
(t0−1∏
k=1

(1 + 128M4η2
k)
)(

1 + 2σ2
∗

t0−1∑
k=1

η2
k

)
.

Observe that

t0−1∏
k=1

(1 + 128M4η2
k) ≤ exp

(128M4

C̃2
β,M

t0−1∑
k=1

(k + 1)−2
)
≤ exp

(
128M4

C̃2
β,M

)
,

and 2σ2
∗
∑t0−1

k=1 η
2
k = 2σ2

∗
C̃2
β,M

∑t0−1
k=1 (k + 1)−2 ≤ 2σ2

∗
C̃2
β,M

. This results in the following bound based

on β and M :

E[‖wt0 −w∗‖2] ≤ 2σ2
∗

C̃2
β,M

+ exp

(
128M4

C̃2
β,M

)
.

4.3 Experiments

In this section, we will verify the theoretical results of SPAM by comparing it with

existing algorithms for AUC optimization. In particular, we will use two variations of

SPAM with different regularizers: SPAM-L2 denotes SPAM with the Frobenius norm,

i.e., Ω(w) = β
2
‖w‖2, and SPAM-NET denotes SPAM with the elastic net norm [121], i.e.,

Ω(w) = β
2
‖w‖2 + β1‖w‖1. In the first case, the solution to the proximal step is straight for-

ward with the Frobenius norm. In the second version, the proximal step can be formulated

as

arg min
w

{
1

2

∥∥∥∥w − ŵt+1

ηtβ + 1

∥∥∥∥2

+
ηtβ1

ηtβ + 1
‖w‖1

}
.

73

Data SPAM-L2 SPAM-NET regSOLAM OPAUC OAMseq OAMgra B-LS-SVM
1 .8272±.0277 .8085±.0431 .8128±.0304 .8309±.0350 .8264±.0367 .8262±.0338 .8325±.0329
2 .8210±.0203 .8211±.0205 .8213±.0209 .8310±.0251 .8306±.0247 .8295±.0251 .8309±.0309
3 .7942±.0388 .7937±.0386 .7778±.0373 .7978±.0347 .7747±.0411 .7723±.0358 .7994±.0343
4 .9263±.0091 .9267±.0090 .9246±.0087 .9232±.0099 .8594±.0194 .8864±.0166 .9245±.0092
5 .9868±.0032 .9855±.0029 .9822±.0036 .9620±.0040 .9310±.0159 .9348±.0122 .9634±.0045
6 .8998±.0046 .8980±.0047 .8966±.0043 .9002±.0047 .8420±.0174 .8571±.0173 .8982±.0028
7 .9254±.0025 .9132±.0026 .9118±.0029 .9242±.0021 .8615±.0087 .8643±.0112 .9336±.0025
8 .8120±.0030 .8109±.0028 .8099±.0036 .8192±.0032 .7113±.0590 .7711±.0217 .8210±.0033
9 .9174±.0024 .9155±.0024 .9129±.0030 .9269±.0021 .9209±.0079 .9100±.0092 .9320±.0037
10 .9504±.0011 .9508±.0011 .9503±.0012 .8244±.0014 .7361±.0317 .7403±.0289 .8222±.0014
11 .8768±.0126 .9077±.0104 .8767±.0129 .9292±.0081 .9163±.0087 .9043±.0100 -
12 .8708±.0069 .8704± .0070 .8712±.0073 .8871±.0083 .8543±.0099 .8346±.0094 -

Table 4.2: Comparison of the testing AUC values (mean±std.). To accelerate
the experiments, the values for OPAUC, OAMseq, OAMgra, and B-LS-SVM
were taken from [34].

The solution to this step is the soft-thresholding operator [75].

We will compare SPAM to the same algorithms that were compared against regSO-

LAM. Table 4.3 summarizes the details of each of the data sets as from Chapter 3. We used

80% of the data for training and the remaining 20% for testing. The average AUC score and

standard deviation results are based on 20 runs for each dataset. The proper parameters for

each data set was determined by 5-fold cross validation on the training sets to determine

the parameter β ∈ 10[−5:5] for SPAM-L2 and β1 ∈ 10[−5:5] for SPAM-NET. The experiments

were conducted with MATLAB.

The classification performance on each data set is summarized in Table 4.3. SPAM-

L2 and SPAM-NET both achieve a comparable performance as the other state of the art

AUC maximization algorithms in both the online and batch settings validating the proposed

methods. It is important to note that the data set sector shows the advantage of using

elastic net with the `1 term since the `1 norm can be used to detect noise in the data.

The CPU running time of SPAM-L2 versus regSOLAM is shown in Figure 4.2 on various

data sets demonstrating the main advantage of SPAM’s running time efficiency. The faster

convergence rate of SPAM over regSOLAM is validated by these figures along with the per-

iteration running time is linear in data dimension. The results shown here demonstrates that

SPAM maintains a competitive performance while achieving a faster rate of performance.

74

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Comparison of SPAM vs. regSOLAM for AUC vs. iteration count.

75

Chapter 5

Stochastic Primal-Dual AUC Maximization

In the previous two chapters we introduced two novel online algorithms for AUC maximiza-

tion. In this chapter, we will introduce a unique batch learning algorithm with a linear

convergence rate. To accomplish this, we will compromise by increasing the per-iteration

cost to solve the AUC optimization problem in (3.6). Recall from chapter 2 the empirical

minimization (ERM) problem for AUC optimization studied in [34, 118]:

argmin
w

1

n+n−

n∑
i=1

n∑
j=1

(1−w>(xi − xj))
2I[yi=1∧yj=−1] +

λ

2
‖w‖2, (5.1)

where n+ and n− denote the numbers of instances in the positive and negative classes,

respectively. In this chapter, we will focus on the ERM problem and design a batch learning

algorithm with a linear convergence rate.

5.1 Method Formulation

To obtain a better understanding of the algorithm to be outlined, consider the general

optimization problem:

min
x∈Rd

1

n

n∑
i=1

fi(x) + g(x), (5.2)

where fi is a convex loss function and g is a regularization term. The formulation in (5.2)

has many examples of well established classification and regression problems based upon the

choice of the convex loss function and regularizer. More background can be found in [33].

An innovative approach to problem (5.2) is to reformulate it as a convex-concave saddle

point problem. This can done by making use of the fenchel conjugate [29] to reformulate the

loss function:

fi(x) = sup
yi∈R
{yix− f ∗i (yi)}, (5.3)

76

where f ∗i (yi) = supα∈R{αyi − fi(α)}. Note that f ∗∗i = fi when fi is both closed and convex

[6]. By applying equation (5.3) to problem (5.2) this results in a convex-concave saddle point

problem as desired:

min
x∈Rd

max
y∈Rn

1

n

n∑
i=1

(yi〈ai,x〉 − f ∗i (yi)) + g(x), (5.4)

where ai ∈ Rd are the feature vectors. Solving the above problem can be done by alternating

between maximizing with respect to y and minimizing with respect to x. However, the dual

variable y has n coordinates, so the maximization step would be of order O(nd) resulting in

this step being very computationally expensive. To overcome this issue, a randomly selected

coordinate of y is only used to maximize f . This results in a computational cost of order

O(d) for each iteration. A natural extension of this idea is to use a mini-batch of coordinates

of y.

The same innovative approach as explained above can be applied to the problem of

AUC maximization. Assuming that ρ is now a uniform distribution and by denoting Nn =

{1, 2, . . . , n} for any n ∈ N, we can reformulate (5.1) as:

min
w∈Rd

(a,b)∈R2

max
α∈R

1

n

∑
i∈Nn

F (w, a, b, α, zi). (5.5)

Before the previous ideas can be considered, a few modifications need to be applied. By

using the definition of F , we obtain the following convex-concave problem:

min
w,a,b

max
α

{ 1

n+

∑
i∈Nn

(w>xi − a)2Iyi=1 +
1

n−

∑
i∈Nn

(w>xi − b)2Iyi=−1

+ 2(1 + α)w>
[1

n−

∑
i∈Nn

xiIyi=−1 −
1

n+

∑
i∈Nn

xiIyi=1

]
− α2 +

λ

2
‖w‖2

}
. (5.6)

If we replace the `2 regularizer by the restriction of w to a ball of radius R, the above

formulation is equivalent to the saddle point formulation (5.5). For this special case, we will

develop in this section a stochastic primal-dual algorithm for AUC optimization (5.5) which

is able to converge with a linear convergence rate.

Before we modify the above formulation, it is beneficial to introduce some helpful

notation. For the discrete formulation, let p = n+

n
. We will define the class means as m+

77

and m− where m+ = 1
n+

∑
i∈Nn xiIyi=1 and m− = 1

n−

∑
i∈Nn xiIyi=−1, and let b = m−−m+.

It will also be helpful for any i ∈ Nn to apply the following transformation to the data:

x̄i =
xi −m+√

2p
if yi = 1, x̄i =

xi −m−√
2(1− p)

if yi = −1. (5.7)

Letting g(w) = 1
2
|b>w|2 + b>w + λ

2
‖w‖2 satisfies the assumption that g is a λ-strongly

convex function. Now we can present the following reformulation of (5.6) of which will be

the basis for the stochastic primal-dual algorithm for AUC maximization.

Proposition 5.1.1. Formulation (5.6) is equivalent to

min
w

max
β

{ 1

n

∑
i∈Nn

βiw
>x̄i −

‖β‖2

2
+ g(w)

}
, (5.8)

where g : Rd → R is defined, for any w ∈ Rd, by g(w) = |b>w|2
2

+ b>w + 1
2
‖w‖2.

Proof. The minimization with respect to a, b and α gives that formulation (5.6) is equivalent

to

min
w

max
α

{ 1

n+

∑
i∈Nn

(w>(xi −m+))2Iyi=1 +
1

n−

∑
i∈Nn

(w>(xi −m−))2Iyi=−1

+ 2b>w + |b>w|2 +
λ

2
‖w‖2

}
.

Substituting the transformation of the data (5.7) into the above equation gives the desired

result.

Using the new formulation of (5.8) this exactly matches the formulation of (5.4) and

we can efficiently solve this problem by using the previously discussed method by first max-

imizing with respect to the dual variable β and then minimizing with respect to the primal

variable w. The method is summarized in Algorithm 21. The proposed method in Algorithm

21 is strongly motivated by the stochastic primal-dual algorithm proposed in [116, 114] which

focused on Support Vector Machine (SVM) and logistic regression. It is important to discuss

the key steps in the algorithm. Maximizing with respect to the primal variable is equivalent

to solving for the convex conjugate. A regularization term with parameter σ is introduced

to ensure that the new solution of β is closer to the previous solution. The last step is an

78

Algorithm 21 Stochastic Primal-Dual Algorithm for AUC Maximization (SPDAM)

Choose parameters σ > 0 and τ > 0
Initialize β(0) and w(0). Let w̄(0) = w(0) and u(0) = 1

n

∑
i∈Nn β

(0)
i x̄i.

for t = 0 to T − 1 do
Uniformly and randomly choose I ⊆ Nn of size m and execute the following updates:

β
(t+1)
i =

{
argmaxβi∈R

{
βi〈w̄(t),xi〉 − |βi|

2

2
− |βi−β

(t)
i |

2

2σ

}
if i ∈ I

β
(t)
i otherwise.

u(t+1) = u(t) +
1

n

∑
i∈I

(β
(t+1)
i − β(t)

i)xi.

ū(t+1) = u(t) +
n

m
(u(t+1) − u(t)).

w(t+1) = argmin
w∈Rd

{
〈ū(t+1),w〉+ g(w) +

‖w −w(t)‖2

2τ

}
.

w̄(t+1) = w(t+1) + θ(w(t+1) −w(t)).
end for

extrapolation step based on Nesterov’s acceleration technique to ensure a fast convergence

rate [72].

Before we detail the convergence analysis, it is appropriate to make some important

comments. The algorithm SPDAM has a faster convergence rate than the methods in the

previous two chapters, however, a disadvantage of SPDAM is that it cannot process streaming

data. The algorithm requires a sufficient batchsize, the probability of the positive class, as

well as the means of both the both positive and negative samples.

5.2 Convergence Analysis

The main novelty of Algorithm 21 is its linear convergence rate. Using the notation

that κ = max{‖xi‖ : i ∈ Nn}, establishing the convergence rate of SPDAM requires the use

of the following critical lemma.

Lemma 5.1. After t+ 1 updates in SPDAM, we have

(1

m
+

1

2σm

)
E
[
‖β(t+1) − β∗‖2

]
=
(1

2σm
+
n−m
nm

)
E
[
‖β(t) − β∗‖2

]
− 1

2σm
E
[
‖β(t+1) − β(t)‖2

]
+ E

[
〈ū(t+1), w̄(t) −w∗〉

]
, (5.9)

79

and

(
λ+

1

2τ

)
E
[
‖w(t+1) −w∗‖2

]
≤ 1

2τ
E
[
‖w(t) −w∗‖2

]
− 1

2τ
E
[
‖w(t+1) −w(t)‖2

]
− E

[
〈ū(t+1),w(t+1) −w∗〉

]
. (5.10)

Proof. We begin by first proving equation (5.9). For any i ∈ Nn, let β̃i be defined as

β̃i = argmax
βi∈R

{
βi〈w̄(t),xi〉 −

|βi|2

2
− |βi − β

(t)
i |2

2σ

}
.

Hence,

|β(t)
i − β∗i |2

2σ
+
|β∗i |2

2
− β∗i 〈w̄(t),xi〉 =

|β(t)
i − β̃i|2

2σ
+
|β̃i|2

2
− β̃i〈w̄(t),xi〉

+
(1

2
+

1

2σ

)
|β̃i − β∗i |2. (5.11)

The saddle point (w∗, β∗) gives by definition that

β∗ = argmax
βi

{
βi〈w∗,xi〉 −

|βi|2

2

}
.

As a consequence of this, β̃i〈w∗, xi〉 − |β̃i|2
2

= β∗i 〈w∗, xi〉 −
|β∗i |2

2
− 1

2
|β̃i − β∗i |2 gives that

|β̃i|2
2
− |β

∗
i |2
2

= (β̃i − β∗i)〈w∗, xi〉+ 1
2
|β̃i − β∗i |2. Substituting this back into (5.11) gives

|β(t)
i − β∗i |2

2σ
+ (β̃i − β∗i)〈w̄(t) −w∗, xi〉 =

|β(t)
i − β̃i|2

2σ
+
(
1 +

1

2σ

)
|β̃i − β∗i |2. (5.12)

Now define Ft to be the sigma field generated by all random variables defined before round

t. The expectation conditioned over Ft gives that

E
(
|β(t)
i − β

(t+1)
i |2|Ft

)
=
m

n
|β̃i − β(t)

i |2

E
(
|β(t+1)
i − β∗i |2|Ft

)
=
m

n
|β̃i − β∗i |2 +

n−m
n
|β(t)
i − β∗i |2

E
(
|β(t+1)
i |2|Ft

)
=
m

n
|β̃i|2 +

n−m
n
|β(t)
i |2, E

(
β

(t+1)
i |Ft

)
=
m

n
β̃i +

n−m
n

β
(t)
i .

The above equalities can be used to represent terms involving β̃i by β
(t+1)
i on the righthand

80

side of (5.12). Therefore, we have

(1

m
+

1

2σm

)
E
[
|β(t+1)
i − β∗i |2|Ft

]
= (

1

2σm
+
n−m
nm

)|β(t)
i − β∗i |2 −

1

2σm
E[‖β(t+1) − β(t)‖2]

+ E
[
〈w̄(t) −w∗,

1

m
(βt+1

i − β∗i) +
1

n
(β

(t)
i − β∗i)xi〉|Ft

]
The summation over i ∈ Nn and the fact that ū(t+1) = 1

m

∑
i∈Nn(βt+1

i −β∗i)xi+ 1
n

∑
i∈Nn(β(t)−

β∗i)xi yields

(1

m
+

1

2σm

)
E
[
|β(t+1) − β∗|2|

]
= (

1

2σm
+
n−m
nm

)E[‖β(t) − β∗‖2]

− 1

2σm
E[‖β(t+1) − β(t)‖2]

+ E
[
〈w̄(t) −w∗, ū(t+1)

]
.

This concludes the proof of the equality in (5.9).

To prove the inequality (5.10) in Lemma 5.1, we begin by using the definition of w(t+1)

and the λ-strong convexity of g. This yields

〈ū(t+1),w∗〉+ g(w∗) +
‖w(t) −w∗‖2

2τ
≥ 〈ū(t+1),w(t+1)〉+ g(w(t+1))

+
‖w(t+1) −w(t)‖2

2τ

+
(λ

2
+

1

2τ

)
‖w(t+1) −w∗‖2. (5.13)

For the optimal β∗i , define u∗ = 1
n

∑
i∈Nn β

∗
i xi. The saddle point (w∗, β∗) gives by definition

that

〈u∗,w(t+1)〉+ g(w(t+1)) ≥ 〈u∗,w∗〉+ g(w∗) +
λ

2
‖w(t+1) −w∗‖2.

Combining the above inequality with (5.13) yields that

(
λ+

1

2τ

)
‖w(t+1) −w∗‖2 ≤ ‖w

(t) −w∗‖2

2τ
− ‖w

(t+1) −w(t)‖2

2τ

− 〈w(t+1) −w∗, ū(t+1) − u∗〉.

This completes the proof of the lemma.

81

We will now state and proof the main theorem regarding the convergence rate of

SPDAM. The use of Lemma 5.1 will be critical in its proof. It is important to note that

the method assumes that the number of samples is known, a pre-selected batch size m, the

probability of a positive class, and the class means.

Theorem 5.1. Assume that g is λ-strongly convex. Let (w∗, β∗) be the saddle point of (5.8).

If the parameter σ, τ and θ are chosen such that

σ =
(n−m) +

√
(n−m)2 + 4nκ2m/λ

8mκ2
, τ =

1

4σκ2
and θ = 1− λ

λ+ 2σκ2
,

then, for any t ≥ 1, the SPDAM algorithm achieves

(1

m
+

1

4σm

)
E
[
‖β(t+1) − β∗‖2

]
+
(
λ+

1

2τ

)
E
[
‖w(t+1) −w∗‖2

]
+

1

4τ
E
[
‖w(t+1) −w(t)‖2

]
≤ θt

[(1

m
+

1

2σm

)
‖β(0) − β∗‖+

(
λ+

1

2τ

)
‖w(0) −w∗‖2

]
. (5.14)

Proof. Combining (5.9) and (5.10) together, this yields

(1

m
+

1

2σm

)
E
[
‖β(t+1) − β∗‖2

]
+
(
λ+

1

2τ

)
E
[
‖w(t+1) −w∗‖2

]
≤
(1

2σm
+

1

m
− 1

n

)
E
[
‖β(t) − β∗‖

]
+

1

2τ
E
[
‖w(t) −w∗‖2

]
− 1

2σm
E
[
‖β(t+1) − β(t)‖2

]
− 1

2τ
E
[
‖w(t+1) −w(t)‖2

]
+ E

[
〈u(t) − u∗ +

n

m
(u(t+1) − u(t)), w̄(t) −w(t+1)〉

]
. (5.15)

From the definitions of u(t), u(t+1) and w̄(t), gives that

〈u(t) − u∗ +
n

m
(u(t+1) − u(t)), w̄(t) −w(t+1)〉

= θ〈u(t) − u∗,w(t) −w(t−1)〉 − 〈u(t+1) − u∗,w(t+1) −w(t)〉

+
nθ

m
〈u(t+1) − u(t),w(t) −w(t−1)〉+

n−m
m
〈u(t+1) − u(t),w(t) −w(t+1)〉.

From the Cauchy-Schwartz inequality, letting X = [x1, x2, . . . , xn]> and the fact that κ2σ =

82

1
4τ

gives

n〈u(t+1) − u(t),w(t) −w(t−1)〉 = 〈
∑
i∈K

(β
(t+1)
i − β(t)

i)xi,w
(t) −w(t−1)〉

≤ ‖β
(t+1) − β(t)‖κ2m

4σκ2m
+
‖w(t) −w(t−1)‖2m

4τ

=
‖β(t+1) − β(t)‖

4σ
+
‖w(t) −w(t−1)‖2m

4τ
. (5.16)

Similarly, n〈u(t+1) − u(t),w(t) − w(t+1)〉 ≤ ‖β(t+1)−β(t)‖
4σ

+ ‖w(t+1)−w(t)‖2m
4τ

. Substituting these

estimations into (5.17) gives that

(1

m
+

1

2σm

)
E
[
‖β(t+1) − β∗‖2

]
+
(
λ+

1

2τ

)
E
[
‖w(t+1) −w∗‖2

]
+

1

2τ
E
[
‖w(t+1) −w(t)‖2

]
+ E

[
〈ut+1 − u∗,w(t+1) −w(t)〉

]
≤
(1

m
+

1

2σm
− 1

n

)
E
[
‖β(t) − β∗‖

]
+

1

2τ
E
[
‖w(t) −w∗‖2

]
+ θ
(1

2τ
E
[
‖w(t) −w(t−1)‖2

]
+ E

[
〈ut − u∗,w(t) −w(t−1)〉

])
. (5.17)

Assuming that σ =
(n−m)+

√
(n−m)2+4nκ2m/λ

8mκ2
, τ = 1

4σκ2
and θ = 1− λ

λ+2σκ2
, this yields

(1

m
+

1

2σm
− 1

n

)
= θ(1 +

1

2σ
) and

1

2τ
= θ(λ+

1

2τ
). (5.18)

Defining4t =
(

1
m

+ 1
2σm

)
E
[
‖β(t)−β∗‖2

]
+
(
λ+ 1

2τ

)
E
[
‖w(t)−w∗‖2

]
+ 1

2τ
E
[
‖w(t)−w(t−1)‖2

]
+

E
[
〈ut−u∗,w(t)−w(t−1)〉

]
, from (5.18) and (5.17) we have that 4t+1 ≤ θ4t . Using the exact

same argument as in (5.16), there holds

|〈ut − u∗,w(t) −w(t−1)〉| ≤ ‖w
(t) −w(t−1)‖2

4τ
+
‖(β(t) − β∗)>X‖2

n2/τ

≤ ‖w
(t) −w(t−1)‖2

4τ
+
‖(β(t) − β∗)>X‖

4nσκ2
≤ ‖w

(t) −w(t−1)‖2

4τ
+
‖β(t) − β∗‖

4nσ
. (5.19)

Now, for any t, we have that

4t ≥
(1

m
+

1

4σm

)
E
[
‖β(t) − β∗‖2

]
+
(
λ+

1

2τ

)
E
[
‖w(t) −w∗‖2

]
+

1

4τ
E
[
‖w(t) −w(t−1)‖2

]
≥ 0. (5.20)

83

Datasets # Inst # Feat Datasets # Inst # Feat

diabetes 768 8 mnist 60,000 780
fourclass 862 2 acoustic 78,823 50
german 1000 24 ijcnn1 141,691 22
splice 3175 60 covtype 581,012 54
usps 9,298 256 sector 9,619 55,197
a9a 32,561 123

Table 5.1: Basic information about the datasets.

(a) splice (b) a9a (c) usps

Figure 5.1: AUC vs. Iteration curves of SPDAM algorithm for various batch
sizes. The batch size is a percentage of the number of samples.

Finally,

4t+1 ≤ θt40 = θt
((1

m
+

1

2σm

)
‖β(0) − β∗‖+

(
λ+

1

2τ

)
‖w(0) −w∗‖2

)
.

Combining this with the inequality (5.20) gives the desired result.

5.3 Experiments

In this last section, we will demonstrate the effectiveness of SPDAM against regSOLAM

along with the previous state-of-the-art AUC maximization algorithms from the previous

chapters. We will use the same conditions as previously used. In other words, 80% of

the data was used for training with the remaining used for testing. The parameter λ was

determined to be tuned between 10[−5:1]. A batch size of 10% was used for m.

A summary of the performances of SPDAM against regSOLAM and other state-of-the-

art AUC optimization methods is given in Table 5.2. Both SPDAM and regSOLAM achieve

84

(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Comparison of SPDAM vs. regSOLAM for AUC vs. iteration
count. For SPDAM, 10% of the data was chosen for a batch size.

85

Datasets SPDAM regSOLAM OPAUC OAMseq OAMgra B-SVM-OR B-LS-SVM
diabetes .8275±.0302 .8140±.0330 .8309±.0350 .8264±.0367 .8262±.0338 .8326±.0328 .8325±.0329
fourclass .8223±.0275 .8222±.0276 .8310±.0251 .8306±.0247 .8295±.0251 .8305±.0311 .8309±.0309
german .7959±.0265 .7830±.0247 .7978±.0347 .7747±.0411 .7723±.0358 .7935±.0348 .7994±.0343
splice .9227±.0128 .9237±.0090 .9232±.0099 .8594±.0194 .8864±.0166 .9239±.0089 .9245±.0092
usps .9854±.0019 .9848±.0021 .9620±.0040 .9310±.0159 .9348±.0122 .9630±.0047 .9634±.0045
a9a .8967±.0032 .8970±.0048 .9002±.0047 .8420±.0174 .8571±.0173 .9009±.0036 .8982±.0028
mnist .9552±.0011 .9599±.0014 .9242±.0021 .8615±.0087 .8643±.0112 .9340±.0020 .9336±.0025
acoustic .8119±.0039 .8114±.0035 .8192±.0032 .7113±.0590 .7711±.0217 .8262±.0032 .8210±.0033
ijcnn1 .9132±.0016 .9108±.0030 .9269±.0021 .9209±.0079 .9100±.0092 .9337±.0024 .9320±.0037
covtype .9409±.0011 .9332±.0020 .8244±.0014 .7361±.0317 .7403±.0289 .8248±.0013 .8222±.0014
sector .9406±.0062 .9734±.0036 .9292±.0081 .9163±.0087 .9043±.0100 - -

Table 5.2: Comparison of the testing AUC values (mean±std.) on the evaluated

datasets. To accelerate the experiments, the value for sector was determined after

five runs instead of 25 for the other data sets. The results of OPAUC, OAMseq,

OAMgra, online Uni-Exp, B-SVM-OR and B-LS-SVM were taken from [34] as in

Chapters 3 and 4.

similar performances as the other state-of-the-art online and offline methods. It should be

noted that in some cases SPDAM and regSOLAM outperform the other learning algorithms.

For example, there is is notable improvement in the data sets mnist and covtype. This

performance increase could be due to the fact that the data sets are randomly partitioned

into two classes making the value of p abnormally high resulting in a higher AUC score.

The main advantage of SPDAM, however, is the running time performance. The

theoretical linear convergence rate of SPDAM shows that it should be faster than regSO-

LAM’s O(1/
√
T) convergence. In Figure 5.2, we present plots of AUC vs. Iterations for

SPDAM against regSOLAM over 6 datasets. These figures confirm our hypothesis that

SPDAM is faster than regSOLAM while maintaining a competitive performance. It is

important to note a disadvantage of SPDAM. To obtain the desired convergence rate, a

sufficiently large batch size (m) needs to be selected. The result in Theorem 5.1 shows that

the value of θ needs to be set small enough to ensure a fast convergence. For this to occur, m

needs to be large enough. Various batch sizes were selected in Figure 5.1 that demonstrates

this. A batch size of 10% is sufficient so that SPDAM is faster than regSOLAM. It is

important to note that for a batch size m = 1, SPDAM has very poor performance making

the algorithm useless for online learning.

86

Chapter 6

Evaluation and Application

The algorithms SPAM and SPDAM were compared in the previous chapters by using

regSOLAM as a benchmark for comparison, however, it is important to conduct an analysis

of the three algorithms together. It is important to note that SPDAM is a batch learning

algorithm while regSOLAM and SPAM are online learning algorithms. So it is expected

that SPDAM should have a faster rate of convergence in comparison to regSOLAM and

SPAM. We introduce the data sets in Section 6.1 and discuss the implementation in Section

6.2. A detailed discussion of the results is in the final section.

6.1 Data Set Descriptions

To examine the performance of the algorithms regSOLAM, SPAM, and SPDAM in

comparison to each other, we conduct experiments on both benchmark datasets and data

related to anomaly detection tasks. A summary of the 16 benchmark datasets is available

in Table 6.1. All of these datasets are available for download from the LIBSVM and UCI

machine learning repository. Note that some of the datasets (mnist, covtype, etc.) are multi-

class, which we converted to binary data by randomly partitioning the data into two groups,

where each group includes the same number of classes.

The methods were also tested on datasets related to anomaly detection tasks to demon-

strate the methods effectiveness in many application domains. As from [21], our algorithms

for AUC maximization could be used for such tasks. The data sets were obtained from [85].

Specifically, we evaluated our algorithms on data sets pertaining to the following application

domains:

• Malicious Websites. We can apply the algorithms to determine if a website is

malicious or not using the webspam dataset.

87

Datasets] Inst] Feat Datasets] Inst] Feat
a9a 32,561 123 ijcnn1 141,691 22
acoustic 78,823 50 ionosphere 351 34
alpha 500,000 500 mnist 60,000 780
beta 500,000 500 news20 15,935 62,061
covtype 581,012 54 sector 9,619 55,197
diabetes 768 8 splice 3,175 60
fourclass 862 2 svmguide3 1243 21
german 1,000 24 usps 9,298 256

Table 6.1: Summary of standard benchmark datasets used in the experiments.

• Bioinformatics Detecting noncoding RNAs from sequenced genomes will be done

using the cod-rna dataset.

• Credit Card Fraud. The australian dataset is used for predicting whether a credit

card application is fraudulent or not.

• Medical Diagnosis We can apply the following datasets for the following medical

diagnosis:

– The arrhythmia dataset determines the presence of cardiac arrhythmia (irregular

heartbeat).

– The breastw and mammography datasets determines if a breast tumor is benign

or malignant.

– The thyroid datset is used for detecting if a patient is hypothyroid.

• Spam Filter The spambase dataset is used for determining whether an email is con-

sidered legitimate or not.

The datasets arrhythmia, breastw, mammography, thyroid were obtained from [85]. The

datasets australian, cod-rna, spambase, and webspam were obtained from [32].

6.2 Implementation and Setup

The experiments were conducted in a similar manner as in the previous chapters.

First, the features of each dataset were normalized. The data is randomly partitioned into

5 folds (4 are for training and 1 is for testing). To determine the proper parameter for each

88

Datasets] Inst] Feat p (%) Datasets] Inst] Feat p (%)
arrhythmia 452 274 15.0 mammography 11183 6 2.32
australian 690 14 45.0 spambase 4601 57 40.0
breastw 683 9 35.0 thyroid 3772 6 2.5
cod-rna 59535 9 33.3 webspam 350,000 254 39.3

Table 6.2: Summary of datasets used for anomaly detection. The statistic p represents

the occurrence of the minority class.

Datasets regSOLAM SPAM SPDAM Datasets regSOLAM SPAM SPDAM
a9a .8951±.0046 .8995±.0041 .8969±.0048 ijcnn1 .9161±.0024 .9285±.0019 .9145± .0019
acoustic .7926±.0040 .8055±.0084 .8153±.0032 ionosphere .8821±.0400 .9064±.0376 .9292±.0364
alpha .8152±.0025 .8525±.0027 .8152±.0012 mnist .9267±.0093 .9467±.0067 .9356±.0028
beta .5011±.0019 .5037±.0011 .5033±.0006 news20 .9399±.0038 .8708±.0069 .8655±.0028
covtype .7658±.0156 .7990±.0001 .8197±.0013 sector .9734±.0036 .8768±.0126 .9406±.0062
diabetes .8178±.0309 .8269±.0339 .8287 ±.0311 splice .9100±.0155 .9173±.0143 .9243±.0125
fourclass .8212±.0209 .8214±.0214 .8217±.0205 svmguide3 .6488±.0328 .6073±.0490 .6226±.0407
german .7765±.0360 .7899±.0313 .7913±.0302 usps .9690±.0033 .9775±.0032 .9791±.0033

Table 6.3: Comparison of the testing AUC values (mean±std.) on the evaluated

benchmark datasets.

dataset, we conducted 5-fold cross validation on the training sets to determine the parameter

λ ∈ 10[−5:1] for SPDAM and SPAM. For regSOLAM, the learning rate ζ ∈ [1 : 9 : 100] and

the regularization parameter λ ∈ 10[−5:5] were found by a grid search. The buffer size for

OAMseq and OAMgra is 100 as suggested [118]. We generate this partition for each dataset

5 times. This results in 25 runs for each dataset for which we used to calculate the average

AUC score and standard deviation. For large datasets, such as alpha and beta, the AUC

score was determined after only 5 runs. All experiments for SPDAM and regSOLAM were

conducted with MATLAB.

Selecting the optimal parameter for each algorithm is a necessary step as demonstrated

in Figure 6.1. For regSOLAM and SPDAM, selecting the optimal parameter β can have

a critical effect on both the achieved AUC performance as well as the convergence of the

method. However, as from the same figure, it is shown that SPAM is less sensitive to changes

in parameter selection.

6.3 Results

In this section, we present the results of regSOLAM, SPAM, and SPDAM on both

standard benchmark and anomaly detection datasets as well as discuss the strengths and

89

(a) regSOLAM (b) regSOLAM

(c) SPAM (d) SPAM

(e) SPDAM (f) SPDAM

Figure 6.1: Comparison of regSOLAM, SPAM, and SPDAM for various param-
eter values.

90

(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Comparison of regSOLAM against SPAM and SPDAM for AUC vs.
of iterations on benchmark datasets.

91

(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Comparison of regSOLAM against SPAM and SPDAM for AUC
vs. time (seconds) on benchmark datasets. The points on the plot of SPDAM
represents the first and second iterations of the algorithm.

92

Datasets regSOLAM SPAM SPDAM
arrhythmia .8284±.0775 .8523±.0672 .8738±.0576
australian .7178±.0462 .7178±.0466 .7656±.0406
breastw .9308±.0208 .9352±.0168 .9315±.0204
cod-rna .9930±.0001 .9062±.0025 .9931 ±.0001
mammography .8961±.0352 .9178±.0205 .9152±.0181
spambase .7295±.0268 .7993±.0158 .7716±.0277
thyroid .9972±.0023 .9976±.0014 .9976±.0012
webspam .9609±.0022 .9660±.0005 .9527±.0006

Table 6.4: Comparison of the testing AUC values (mean±std.) on anomaly detection

datasets.

weaknesses of the proposed methods. The performance of each method is demonstrated in

Tables 6.3 and 6.4. Convergence plots of selected datasets are found in Figures 6.2, 6.3, and

6.4.

It is known that batch learning algorithms are able to better optimize the objective

function over online learning since more data is being processed during each iteration. As

from Table 6.3, SPDAM outperforms both regSOLAM and SPAM in many of the benchmark

datasets. In the case of the anomaly detection, datasets in Table 6.4, regSOLAM and SPAM

achieve a similar performance to SPDAM in many of the tasks, but overall SPDAM achieves

a better AUC performance.

Even though SPDAM is able to outperform regSOLAM and SPAM, a critical analysis

to consider is the convergence rate of each method. A major draw back of SPDAM, and

other batch learning methods, is that these methods result in a higher computational cost

for each iteration step. Specifically, SPDAM processes a mini batch of size m with each

sample of dimension d, thus resulting in a complexity of O(md), while the per-iteration

cost of regSOLAM and SPAM are only of the order O(d). This difference is insignificant

for small datasets such as diabetes or fourclass. But for high dimensional data sets such

as alpha and beta, the difference in computational time is significant and puts SPDAM at

a major disadvantage in terms of computational time. This is illustrated in Figures 6.2,

6.3, and 6.4. Since SPDAM was shown in chapter 5 to have a linear convergence rate, it is

expected to outperform the other methods when the rate of convergence is measured against

the iteration count. However, when considering the computational time of each method as

in Figure 6.3, SPDAM is considered extremely slow compared to regSOLAM and SPAM.

Since each step of SPDAM is of order O(md), for low dimensional datasets such as diabetes

93

(a) (b)

(c) (d)

Figure 6.4: Comparison of regSOLAM against SPAM and SPDAM for AUC vs.
of iterations for anomaly detection tasks.

and fourclass, SPDAM is still able to outperform regSOLAM and SPAM, however, for high

dimensional datasets such as usps and a9a, regSOLAM and SPAM are able to convergence

even before SPAM completes its second iteration. Overall, even though SPDAM results in

a higher optimized AUC score, the method would not be useful for big data.

A drawback of the proposed algorithms in this thesis is demonstrated by the poor

peformance of the dataset beta. As from Theorem 3.1, a critical assumption of this thesis

is that for each method, the goal is to determine a linear function for classification. In

many datasets like beta, this cannot always be achieved. To overcome this problem, data

is generally mapped to a higher dimension to where the data can be separated by a linear

function. This is done by way of feature maps or kernel methods.

94

Chapter 7

Conclusion

In this thesis, we presented several novel contributions to the area of designing algorithms

that overcome the challenges in optimizing AUC. Novel online and batch learning meth-

ods were developed for optimizing the AUC metric in chapters 3, 4, and 5. Experimental

validation was performed on benchmark datasets for each of the proposed methods as well

as a comparison between each of the methods. Furthermore, we applied the methods to

anomaly detection tasks in numerous application domains. We will first outline the main

contributions of this work as well as outline directions for future work.

7.1 Contributions

The main contributions of this thesis will be outlined in this section. In chapter 3, we

formed the saddle point formulation for AUC optimization that overcomes the significant

challenges of AUC optimization. Existing methods have attempted to overcome this, but

with significant drawbacks for high dimensional data. Using chapter 3 as a foundation, we

are able to further develop other algorithms that optimize the AUC score. To ensure a

fair comparison with the methods developed in chapters 4 and 5, a regularization term was

included in the saddle point formulation and the stochastic online method (regSOLAM) was

appropriately modified. We also showed that the method still obtains a convergence rate of

O(1/
√
T).

From the formulation in chapter 3, it is of interest to develop algorithms with a faster

rate of convergence. The first of which, was discussed in chapter 4. Exploiting the idea that

the primal and dual variables can be determined in terms of the current iterate of w, a novel

stochastic proximal algorithm (SPAM) for AUC maximization with general penalty terms

was developed. We proved that the algorithm could achieve a convergence rate of O(1/T)

up to a logarithmic term for strongly convex regularizers. The L2 and elastic net regularizers

95

were chosen for experimental validation with the latter showing increased performance. The

resulting method has a space and per-iteration complexity of one datum.

For the last contribution of this thesis, we began with the empirical risk minimization

problem for AUC that has been previously studied extensively. We developed a stochastic

primal-dual algorithm for AUC optimization by compromising on the per-iteration costs

and exploited the objective function by using the conjugate of the objective function. Unlike

the previous methods, the proposed algorithm used a mini-batch of samples to update the

model. We then showed that the method can achieve a linear convergence rate and validated

it experimentally.

Finally, we compared all three methods using numerous standard benchmark datasets.

Additionally, we applied the methods to anomaly detection problems such as spam detection,

credit card fraud detection, and medical diagnosis. Overall, we showed that regSOLAM,

SPAM, and SPDAM are capable of optimizing the AUC score. Furthermore, we showed

that SPDAM can achieve better better performance in some cases, which is to be expected

since it is a batch learning algorithm. However, if the batch size is not selected sufficiently

large enough, the method has poor performance. An advantage of SPAM over SPDAM is

that it is ideal for processing streaming data.

7.2 Future Work

There are several promising directions for future work based on this thesis.

• Stochastic gradient descent is preferred for large scale optimization problems, however,

the method is based on the learning rate η. It is desirable for a large learning rate to

ensure faster convergence, but this increases the variance of each solution. A popular

algorithmic approach is designing stochastic variance reduction algorithms [43] and

stochastic primal-dual algorithms [116] that have a linear convergence rate. It is of

interest to develop variance reduction methods for AUC optimization with reduced

per-iteration costs.

• For regSOLAM, it is of interest to determine the strong convergence of w̄T in compar-

ison to the optimal solution of the AUC problem.

96

• The saddle point formulation was only shown for the least square loss. It is not known

if the formulation holds true of other loss functions such as the hinge loss.

• SPAM achieves a convergence of O(1/T) under strong convexity. It remains unclear

whether or not this assumption is necessary. The proof techniques in [1, 110] could be

used to remove this assumption.

• A major assumption of this work was to find a function linear scoring function, i.e.,

f(x) = sign(wTx). A novel extension of this work would be to extend these methods

to nonlinear scoring functions using kernel methods. Some work has been done for

stochastic methods to include kernel functions [17].

• In addition to the previous extension, these ideas could be used with AUC maximiza-

tion in deep learning. Previous work on this topic has already been done, however,

there still exists many open problems in this area [58].

• In addition to ROC analysis being used in many application domains, lift is another

measurement that is used for imbalanced class distributions in areas of direct marketing

[56] and fraud detection [94]. The ideas presented in this thesis could be used to design

methods that optimize the area under the lift chart.

97

Bibliography

[1] F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with

convergence rate o (1/n). In Advances in neural information processing systems, pages

773–781, 2013.

[2] H H Bauschke and P L Combettes. Convex analysis and monotone operator theory in

Hilbert spaces, volume 408. Springer, 2011.

[3] Kristin P Bennett and Olvi L Mangasarian. Robust linear programming discrimination

of two linearly inseparable sets. Optimization methods and software, 1(1):23–34, 1992.

[4] Michael J Berry and Gordon Linoff. Data mining techniques: for marketing, sales, and

customer support. John Wiley & Sons, Inc., 1997.

[5] L. Bottou and Y. L. Cun. Large scale online learning. In Advances in neural informa-

tion processing systems, 2004.

[6] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university

press, 2004.

[7] A P Bradley. The use of the area under the roc curve in the evaluation of machine

learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[8] Claire Cardie and Nicholas Howe. Improving minority class prediction using case-

specific feature weights. In ICML, pages 57–65, 1997.

[9] SH Clearwater and EG Stern. A rule-learning program in high energy physics event

classification. Computer physics communications, 67(2):159–182, 1991.

[10] S. Clémençon, G. Lugosi, and N. Vayatis. Ranking and empirical minimization of

u-statistics. The Annals of Statistics, pages 844–874, 2008.

[11] William W Cohen, Robert E Schapire, and Yoram Singer. Learning to order things.

In Advances in Neural Information Processing Systems, pages 451–457, 1998.

98

[12] Michael Collins, Robert E Schapire, and Yoram Singer. Logistic regression, adaboost

and bregman distances. Machine Learning, 48(1-3):253–285, 2002.

[13] C. Cortes and M. Mohri. Auc optimization vs. error rate minimization. In Advances

in neural information processing systems, pages 313–320, 2004.

[14] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram

Singer. Online passive-aggressive algorithms. Journal of Machine Learning Research,

7(Mar):551–585, 2006.

[15] Koby Crammer, Mark Dredze, and Fernando Pereira. Exact convex confidence-

weighted learning. In Advances in Neural Information Processing Systems, pages 345–

352, 2009.

[16] Noel Cressie. Statistics for spatial data. Terra Nova, 4(5):613–617, 1992.

[17] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, and

Le Song. Scalable kernel methods via doubly stochastic gradients. In Advances in

Neural Information Processing Systems, pages 3041–3049, 2014.

[18] Soham Dan and Dushyant Sahoo. Variance reduced stochastic proximal algorithm for

auc maximization. arXiv preprint arXiv:1911.03548, 2019.

[19] AP Dawid, RG Cowell, SL Lauritzen, and DJ Spiegelhalter. Probabilistic networks

and expert systems. Springer-Verlag, 1999.

[20] Thomas G Dietterich. Approximate statistical tests for comparing supervised classifi-

cation learning algorithms. Neural computation, 10(7):1895–1923, 1998.

[21] Yi Ding, Peilin Zhao, Steven CH Hoi, and Yew-Soon Ong. An adaptive gradient

method for online auc maximization. In AAAI, pages 2568–2574, 2015.

[22] Mark Dredze, Koby Crammer, and Fernando Pereira. Confidence-weighted linear clas-

sification. In Proceedings of the 25th international conference on Machine learning,

pages 264–271. ACM, 2008.

[23] J. Duchi, E. Hazan., and Y. Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–

2159, 2011.

99

[24] J Duchi and Y Singer. Efficient online and batch learning using forward backward

splitting. Journal of Machine Learning Research, 10(Dec):2899–2934, 2009.

[25] James P Egan. Signal Detection Theory and ROC Analysis Academic Press Series in

Cognition and Perception. London, UK: Academic Press, 1975.

[26] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

Liblinear: A library for large linear classification. Journal of machine learning research,

9(Aug):1871–1874, 2008.

[27] Tom Fawcett and Foster Provost. Adaptive fraud detection. Data mining and knowl-

edge discovery, 1(3):291–316, 1997.

[28] Tom Fawcett and Foster J Provost. Combining data mining and machine learning for

effective user profiling. In KDD, pages 8–13, 1996.

[29] Werner Fenchel. On conjugate convex functions. Canadian Journal of Mathematics,

1(1):73–77, 1949.

[30] César Ferri, Peter Flach, and José Hernández-Orallo. Learning decision trees using the

area under the roc curve. In ICML, volume 2, pages 139–146, 2002.

[31] Vojtěch Franc and Soeren Sonnenburg. Optimized cutting plane algorithm for support

vector machines. In Proceedings of the 25th International Conference on Machine

Learning, ICML ’08, pages 320–327, New York, NY, USA, 2008. ACM.

[32] Andrew Frank and Arthur Asuncion. Uci machine learning repository [http://archive.

ics. uci. edu/ml]. irvine, ca: University of california. School of information and com-

puter science, 213, 2010.

[33] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, vol-

ume 1. Springer series in statistics New York, 2001.

[34] W. Gao, R. Jin, S. Zhu, and Z.-H. Zhou. One-pass auc optimization. In International

Conference on Machine Learning, pages 906–914, 2013.

[35] Wei Gao and Zhi-Hua Zhou. On the consistency of auc pairwise optimization. In

IJCAI, pages 939–945, 2015.

100

[36] San Gultekin, Avishek Sana, Adwait Ratnaparkhi, and John Paisley. Mba: Mini-batch

auc optimization. arXiv preprint arXiv:1805.11221, 2018.

[37] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver

operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

[38] James A Hanley and Barbara J McNeil. The meaning and use of the area under a

receiver operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

[39] A Herschtal and B Raskutti. Optimising area under the roc curve using gradient de-

scent. In Proceedings of the twenty-first international conference on Machine learning,

page 49. ACM, 2004.

[40] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sellamanickam

Sundararajan. A dual coordinate descent method for large-scale linear svm. In Proceed-

ings of the 25th international conference on Machine learning, pages 408–415. ACM,

2008.

[41] Thorsten Joachims. A support vector method for multivariate performance measures.

In Proceedings of the 22nd international conference on Machine learning, pages 377–

384. ACM, 2005.

[42] Thorsten Joachims. Training linear svms in linear time. In Proceedings of the 12th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’06, pages 217–226, New York, NY, USA, 2006. ACM.

[43] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive

variance reduction. In Advances in neural information processing systems, pages 315–

323, 2013.

[44] S Sathiya Keerthi and Dennis DeCoste. A modified finite newton method for fast

solution of large scale linear svms. Journal of Machine Learning Research, 6(Mar):341–

361, 2005.

[45] James E Kelley, Jr. The cutting-plane method for solving convex programs. Journal

of the society for Industrial and Applied Mathematics, 8(4):703–712, 1960.

101

[46] Krzysztof C Kiwiel. Proximity control in bundle methods for convex nondifferentiable

minimization. Mathematical programming, 46(1-3):105–122, 1990.

[47] Roger Koenker and Kevin F Hallock. Quantile regression. Journal of economic per-

spectives, 15(4):143–156, 2001.

[48] W Kotlowski, K J Dembczynski, and E Huellermeier. Bipartite ranking through min-

imization of univariate loss. In Proceedings of the 28th International Conference on

Machine Learning (ICML-11), pages 1113–1120, 2011.

[49] Miroslav Kubat, Robert C Holte, and Stan Matwin. Machine learning for the detection

of oil spills in satellite radar images. Machine learning, 30(2-3):195–215, 1998.

[50] Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach to ob-

taining an o (1/t) convergence rate for the projected stochastic subgradient method.

arXiv preprint arXiv:1212.2002, 2012.

[51] G Lan. An optimal method for stochastic composite optimization. Mathematical

Programming, 133(1):365–397, 2012.

[52] Claude Lemaréchal, Arkadii Nemirovskii, and Yurii Nesterov. New variants of bundle

methods. Mathematical programming, 69(1-3):111–147, 1995.

[53] David D Lewis. Evaluating text categorization i. In Speech and Natural Language:

Proceedings of a Workshop Held at Pacific Grove, California, February 19-22, 1991,

1991.

[54] Alexandra L’heureux, Katarina Grolinger, Hany F Elyamany, and Miriam AM Capretz.

Machine learning with big data: Challenges and approaches. IEEE Access, 5:7776–

7797, 2017.

[55] Charles X Ling, Jin Huang, and Harry Zhang. Auc: a better measure than accuracy in

comparing learning algorithms. In Conference of the canadian society for computational

studies of intelligence, pages 329–341. Springer, 2003.

[56] Charles X Ling and Chenghui Li. Data mining for direct marketing: Problems and

solutions. In Kdd, volume 98, pages 73–79, 1998.

102

[57] Charles X Ling and Huajie Zhang. Toward bayesian classifiers with accurate proba-

bilities. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages

123–134. Springer, 2002.

[58] Mingrui Liu, Zhuoning Yuan, Yiming Ying, and Tianbao Yang. Stochastic auc maxi-

mization with deep neural networks. arXiv preprint arXiv:1908.10831, 2019.

[59] Mingrui Liu, Xiaoxuan Zhang, Zaiyi Chen, Xiaoyu Wang, and Tianbao Yang. Fast

stochastic auc maximization with o (1/n)-convergence rate. In International Confer-

ence on Machine Learning, pages 3195–3203, 2018.

[60] Brian Mac Namee, Padraig Cunningham, Stephen Byrne, and Owen I Corrigan. The

problem of bias in training data in regression problems in medical decision support.

Artificial intelligence in medicine, 24(1):51–70, 2002.

[61] M A Maloof. Learning when data sets are imbalanced and when costs are unequal and

unknown. In ICML-2003 workshop on learning from imbalanced data sets II, volume 2,

pages 2–1, 2003.

[62] Marcus A Maloof, Pat Langley, Thomas O Binford, Ramakant Nevatia, and Stephanie

Sage. Improved rooftop detection in aerial images with machine learning. Machine

Learning, 53(1-2):157–191, 2003.

[63] Olvi L Mangasarian. Linear and nonlinear separation of patterns by linear program-

ming. Operations research, 13(3):444–452, 1965.

[64] Eric Moulines and Francis R Bach. Non-asymptotic analysis of stochastic approxima-

tion algorithms for machine learning. In Advances in Neural Information Processing

Systems, pages 451–459, 2011.

[65] Michael C Mozer, Robert Dodier, Michael D Colagrosso, César Guerra-Salcedo, and

Richard Wolniewicz. Prodding the roc curve: Constrained optimization of classifier

performance. In Advances in Neural Information Processing Systems, pages 1409–1415,

2002.

103

[66] K-R Müller, Alexander J Smola, Gunnar Rätsch, Bernhard Schölkopf, Jens Kohlmor-

gen, and Vladimir Vapnik. Predicting time series with support vector machines. In In-

ternational Conference on Artificial Neural Networks, pages 999–1004. Springer, 1997.

[67] Allan H Murphy. The finley affair: A signal event in the history of forecast verification.

Weather and Forecasting, 11(1):3–20, 1996.

[68] Michael Natole, Yiming Ying, and Siwei Lyu. Stochastic proximal algorithms for auc

maximization. In International Conference on Machine Learning, pages 3707–3716,

2018.

[69] Michael Anthony Natole, Yiming Ying, and Siwei Lyu. Stochastic auc optimization

algorithms with linear convergence. Frontiers in Applied Mathematics and Statistics,

5:30, 2019.

[70] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation

approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609,

2009.

[71] Y. Nesterov. A method of solving a convex programming problem with convergence

rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

[72] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, vol-

ume 87. Springer Science & Business Media, 2013.

[73] Francesco Orabona and Koby Crammer. New adaptive algorithms for online classifi-

cation. In Advances in neural information processing systems, pages 1840–1848, 2010.

[74] Balamurugan Palaniappan and Francis Bach. Stochastic variance reduction methods

for saddle-point problems. In Advances in Neural Information Processing Systems,

pages 1416–1424, 2016.

[75] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and Trends R© in

Optimization, 1(3):127–239, 2014.

[76] DJ Peres and A Cancelliere. Derivation and evaluation of landslide-triggering thresh-

olds by a monte carlo approach. Hydrology and Earth System Sciences, 18(12):4913–

4931, 2014.

104

[77] DJ Peres, C Iuppa, L Cavallaro, A Cancelliere, and E Foti. Significant wave height

record extension by neural networks and reanalysis wind data. Ocean Modelling,

94:128–140, 2015.

[78] F Provost and T Fawcett. Robust classification for imprecise environments. Machine

learning, 42(3):203–231, 2001.

[79] Foster Provost and Tom Fawcett. Robust classification systems for imprecise environ-

ments. In AAAI/IAAI, pages 706–713, 1998.

[80] Foster J Provost, Tom Fawcett, et al. Analysis and visualization of classifier perfor-

mance: Comparison under imprecise class and cost distributions. In KDD, volume 97,

pages 43–48, 1997.

[81] Foster J Provost, Tom Fawcett, Ron Kohavi, et al. The case against accuracy es-

timation for comparing induction algorithms. In ICML, volume 98, pages 445–453,

1998.

[82] A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly

convex stochastic optimization. In Proceedings of the 29th International Conference

on Machine Learning (ICML-12), pages 449–456, 2012.

[83] A Rakhlin, O Shamir, and K Sridharan. Making gradient descent optimal for strongly

convex stochastic optimization. In Proceedings of the 29th International Conference

on Machine Learning, pages 449–456, 2012.

[84] Alain Rakotomamonjy. Optimizing auc with support vector machine. In European

Conference on Artificial Intelligence Workshop on ROC Curve and AI, 2004.

[85] Shebuti Rayana. Odds library, 2016.

[86] Lorenzo Rosasco, Silvia Villa, and Bang Công Vũ. Convergence of stochastic proximal

gradient algorithm. arXiv preprint arXiv:1403.5074, 2014.

[87] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386, 1958.

105

[88] Lorenza Saitta and Filippo Neri. Learning in the “real world”. Machine learning,

30(2-3):133–163, 1998.

[89] Steven L Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended

approach. Data mining and knowledge discovery, 1(3):317–328, 1997.

[90] Helga Schramm and Jochem Zowe. A version of the bundle idea for minimizing a

nonsmooth function: Conceptual idea, convergence analysis, numerical results. SIAM

journal on optimization, 2(1):121–152, 1992.

[91] S Shalev-Shwartz. Online learning and online convex optimization. Foundations and

Trends R© in Machine Learning, 4(2):107–194, 2012.

[92] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos:

Primal estimated sub-gradient solver for svm. Mathematical programming, 127(1):3–

30, 2011.

[93] O Shamir and T Zhang. Stochastic gradient descent for non-smooth optimization:

Convergence results and optimal averaging schemes. In International Conference on

Machine Learning, pages 71–79, 2013.

[94] Aihua Shen, Rencheng Tong, and Yaochen Deng. Application of classification models

on credit card fraud detection. In 2007 International conference on service systems

and service management, pages 1–4. IEEE, 2007.

[95] S. Smale and Y. Yao. Online learning algorithms. Foundations of computational

mathematics, 6(2):145–170, 2006.

[96] Kent A. Spackman. Signal detection theory: Valuable tools for evaluating inductive

learning. In Alberto Maria Segre, editor, Proceedings of the Sixth International Work-

shop on Machine Learning, pages 160 – 163. Morgan Kaufmann, San Francisco (CA),

1989.

[97] N. Srebro and A. Tewari. Stochastic optimization for machine learning. ICML Tutorial,

2010.

[98] John A Swets. Measuring the accuracy of diagnostic systems. Science, 240(4857):1285–

1293, 1988.

106

[99] John A Swets, Robyn M Dawes, and John Monahan. Better decisions through science.

Scientific American, 283(4):82–87, 2000.

[100] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. In

Advances in neural information processing systems, pages 25–32, 2004.

[101] Choon Hui Teo, SVN Vishwanthan, Alex J Smola, and Quoc V Le. Bundle methods

for regularized risk minimization. Journal of Machine Learning Research, 11(Jan):311–

365, 2010.

[102] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun.

Support vector machine learning for interdependent and structured output spaces. In

Proceedings of the twenty-first international conference on Machine learning, page 104.

ACM, 2004.

[103] V Vapnik. Statistical learning theory new york. NY: Wiley, 1998.

[104] Vladimir Vapnik. Support vector method for function estimation, September 7 1999.

US Patent 5,950,146.

[105] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathe-

matical Software (TOMS), 11(1):37–57, 1985.

[106] Miha Vuk and Tomaz Curk. Roc curve, lift chart and calibration plot. Metodoloski

zvezki, 3(1):89, 2006.

[107] Christopher KI Williams. Prediction with gaussian processes: From linear regression to

linear prediction and beyond. In Learning in graphical models, pages 599–621. Springer,

1998.

[108] Stephen Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35(67-

68):7, 1999.

[109] Lian Yan, Robert H Dodier, Michael Mozer, and Richard H Wolniewicz. Optimizing

classifier performance via an approximation to the wilcoxon-mann-whitney statistic.

In Proceedings of the 20th International Conference on Machine Learning (ICML-03),

pages 848–855, 2003.

107

[110] Tianbao Yang and Qihang Lin. Rsg: Beating subgradient method without smoothness

and strong convexity. arXiv preprint arXiv:1512.03107, 2015.

[111] I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the

predictive accuracy of probability of default of credit card clients. Expert Systems with

Applications, 36(2):2473–2480, 2009.

[112] Y. Ying and M. Pontil. Online gradient descent learning algorithms. Foundations of

Computational Mathematics, 8(5):561–596, 2008.

[113] Y. Ying, L. Wen, and S. Lyu. Stochastic online auc maximization. In Advances in

Neural Information Processing Systems, 2016.

[114] Adams Wei Yu, Qihang Lin, and Tianbao Yang. Doubly stochastic primal-dual coordi-

nate method for empirical risk minimization and bilinear saddle-point problem. arXiv

preprint arXiv:1508.03390, 2015.

[115] Yao-Liang Yu. The proximity operator. 2014.

[116] Yuchen Zhang and Lin Xiao. Stochastic primal-dual coordinate method for regularized

empirical risk minimization. The Journal of Machine Learning Research, 18(1):2939–

2980, 2017.

[117] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image restora-

tion with neural networks. IEEE Transactions on Computational Imaging, 3(1):47–57,

2017.

[118] P. Zhao, R. Jin, T. Yang, and S. C. Hoi. Online auc maximization. In Proceedings of

the 28th international conference on machine learning (ICML-11), 2011.

[119] Tianyi Zhou, Dacheng Tao, and Xindong Wu. NESVM: a fast gradient method for

support vector machines. CoRR, abs/1008.4000, 2010.

[120] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient

ascent. In Proceedings of the 20th International Conference on Machine Learning

(ICML-03), pages 928–936, 2003.

108

[121] H Zou and T Hastie. Regularization and variable selection via the elastic net. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

[122] Kelly H Zou. Receiver operating characteristic (roc) literature research. On-line bibli-

ography available from:¡ http://splweb. bwh. harvard. edu, 8000, 2002.

109

